满分5 > 初中数学试题 >

如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、...

如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形AnBnCnDn的面积为   
manfen5.com 满分网
由E、F、G、H分别为菱形A1B1C1D1各边的中点,得到A1H=C1F,又A1H∥C1F,利用一组边长平行且相等的四边形为平行四边形得到四边形A1HC1F为平行四边形,根据平行线间的距离相等及平行四边形与三角形的面积公式,可得出四边形A1HC1F的面积等于△HB1C1面积的2倍,等于△A1D1F面积的2倍,而这三个的面积之和为菱形的面积S,可得出四边形A1HC1F面积为菱形面积S的一半,再由平行线等分线段定理得到A2为A1D2的中点,C2为C1B2的中点,B2为B1A2的中点,D2为D1C2的中点,利用三角形的中位线定理得到HB2=A1A2,D2F=C1C2,可得出A1A2B2H和C1C2D2F都为梯形,且高与平行四边形A2B2C2D2的高h相等(设高为h),下底与平行四边形A2B2C2D2的边A2D2与x相等(设A2D2=x),分别利用梯形的面积公式及平行四边形的面积公式表示出各自的面积,得出三个面积之比,可得出平行四边形A2B2C2D2的面积占三个图形面积的,即为四边形A1HC1F面积的,为菱形面积的,同理得到四边形A3B3C3D3的面积为菱形面积的()2,以此类推,表示出四边形AnBnCnDn的面积即可. 【解析】 ∵H为A1B1的中点,F为C1D1的中点, ∴A1H=B1H,C1F=D1F, 又A1B1C1D1为菱形,∴A1B1=C1D1, ∴A1H=C1F,又A1H∥C1F, ∴四边形A1HC1F为平行四边形, ∴S四边形A1HC1F=2S△HB1C1=2S△A1D1F, 又S四边形A1HC1F+S△HB1C1+S△A1D1F=S菱形A1B1C1D1=S, ∴S四边形A1HC1F=S, 又GD1=B1E,GD1∥B1E, ∴GB1ED1为平行四边形, ∴GB1∥ED1,又G为A1D1的中点, ∴A2为A1D2的中点, 同理C2为C1B2的中点,B2为B1A2的中点,D2为D1C2的中点, ∴HB2=A1A2,D2F=C1C2, 又A1A2B2H和C1C2D2F都为梯形,且高与平行四边形A2B2C2D2的高h相等(设高为h), 下底与平行四边形A2B2C2D2的边A2D2与x相等(设A2D2=x), ∴S梯形A1A2B2H=S梯形C1C2D2F=(x+x)h=xh,S平行四边形A2B2C2D2=xh, 即S梯形A1A2B2H:S梯形C1C2D2F:S平行四边形A2B2C2D2=3:3:4, 又S梯形A1A2B2H+S梯形C1C2D2F+S平行四边形A2B2C2D2=S四边形A1HC1F, ∴S平行四边形A2B2C2D2=S四边形A1HC1F=S, 同理S四边形A3B3C3D3=()2S, 以此类推得四边形AnBnCnDn的面积为()n-1S或. 故答案为:()n-1S或.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为   
manfen5.com 满分网 查看答案
如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行    海里.
manfen5.com 满分网 查看答案
某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为    查看答案
从-2、1、manfen5.com 满分网这三个数中任取两个不同的数相乘,积是无理数的概率是    查看答案
如图,已知∠1=∠2,∠B=40°,则∠3=   
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.