如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=-2x-1经过抛物线上一点B(-2,m)且与y轴交于点C,与抛物线的对称轴交于点F.
(1)求m的值及该抛物线对应的解析式;
(2)P(x,y)是抛物线上的一点,若S
△ADP=S
△ADC,求出所有符合条件的点P的坐标;
(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.
考点分析:
相关试题推荐
为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.
(1)求购买每个笔记本和每支钢笔各多少元?
(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?
查看答案
如图,⊙O的直径AB的长为10,直线EF经过点B且∠CBF=∠CDB.连接AD.
(1)求证:直线EF是⊙O的切线;
(2)若点C是弧AB的中点,sin∠DAB=
,求△CBD的面积.
查看答案
某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有______人,女生有______人;
(2)扇形统计图中a=______,b=______;
(3)补全条形统计图(不必写出计算过程);
(4)若本校500名毕业生中随机抽取一名学生,这名学生该项测试成绩在8分以下的概率是多少?
查看答案
已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD,
垂足为E.
(1)求证:△ABE∽△DBC;
(2)求线段AE的长.
查看答案
先化简,再求值:
,其中x=3tan30°+1.
查看答案