满分5 > 初中数学试题 >

如图,已知平面直角坐标系xOy中,点A(2,m),B(-3,n)为两动点,其中m...

如图,已知平面直角坐标系xOy中,点A(2,m),B(-3,n)为两动点,其中m>1,连接OA,OB,OA⊥OB,作BC⊥x轴于C点,AD⊥x轴于D点.
(1)求证:mn=6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:2?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.

manfen5.com 满分网
(1)根据A、B的坐标,可得OC、OD、BC、AD的长,由于OA⊥OB,可证得△BOC∽△OAD,根据相似三角形所得比例线段,即可证得所求的结论. (2)欲求抛物线的解析式,需先求出A、B的坐标;根据(1)的相似三角形,可得3OA=mOB,用OB表示出OA,代入△OAB的面积表达式中,可得到OB2的值,在Rt△BOC中,利用勾股定理可求得另外一个OB2的表达式,联立两式可得关于m、n的等式,结合(1)的结论即可求出m、n的值,从而确定A、B的坐标和抛物线的解析式. (3)求直线l的解析式,需先求出P、Q的坐标,已知S△POF:S△QOF=1:2,由于两三角形同底不等高,所以面积比等于高的比,即P、Q两点横坐标绝对值的比,可设出点P的坐标,然后根据两者的比例关系表示出点Q的坐标,由于点Q在抛物线的图象上,可将其代入抛物线的解析式中,即可求得点P、Q的坐标,进而可利用待定系数法求得直线l的解析式. 证明:(1)∵A,B点坐标分别为(2,m),(-3,n), ∴BC=n,OC=3,OD=2,AD=m, 又∵OA⊥OB,易证△CBO∽△DOA, ∴, ∴, ∴mn=6. 【解析】 (2)由(1)得,,又S△AOB=10, ∴, 即BO•OA=20, ∴mBO2=60, 又∵OB2=BC2+OC2=n2+9, ∴m(n2+9)=60, 又∵mn=6①, ∴m(n2+9)=mn•n+9m=6n+9m=60, ∴2n+3m=20②, ∴①②联立得,m=6(m=不合题意,舍去),n=1; ∴A坐标为(2,6),B坐标为(-3,1), 易得抛物线解析式为y=-x2+10. (3)直线AB为y=x+4,且与y轴交于F(0,4)点, ∴OF=4, 假设存在直线l交抛物线于P,Q两点,且使S△POF:S△QOF=1:2,如图所示, 则有PF:FQ=1:2,作PM⊥y轴于M点,QN⊥y轴于N点, ∵P在抛物线y=-x2+10上, ∴设P坐标为(t,-t2+10), 则FM=-t2+10-4=-t2+6,易证△PMF∽△QNF, ∴, ∴QN=2PM=-2t,NF=2MF=-2t2+12, ∴ON=-2t2+8, ∴Q点坐标为(-2t,2t2-8), Q点在抛物线y=-x2+10上,2t2-8=-4t2+10, 解得, ∴P坐标为(-,7),Q坐标为(2,-2), ∴易得直线PQ为y=-x+4; 根据抛物线的对称性可得直线PQ的另解为y=x+4.
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中对角线AC、BD相交于点F,延长BC到点E,使得四边形ACED是一个平行四边形,平行四边形对角线AE交BD、CD分别为点G和点H.
(1)证明:DG2=FG•BG;
(2)若AB=5,BC=6,则线段GH的长度.

manfen5.com 满分网 查看答案
某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元.
(1)求挂式空调和电风扇每台的采购价各是多少元?
(2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.该业主希望当这两种电器销售完时,所获得的利润不少于3500元.
①试问该经营业主有哪几种进货方案?
②设该业主计划购进空调t台,这两种电器销售完后,所获得的利润为W元、求W关于t的函数解析式,并利用函数的性质说明哪种方案获利最大?最大利润是多少?
查看答案
小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1 和图2.请你根据图中提供的信息,解答下列问题:
(1)在图1中,将“书画”部分的图形补充完整;
(2)在图2中,求出“球类’’部分所对应的圆心角的度数,并分别写出爱好“音乐”、“书画”的人数占本班学生数的百分数.
manfen5.com 满分网
查看答案
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象相交于A、B两点.
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图象写出不等式manfen5.com 满分网的解集.

manfen5.com 满分网 查看答案
一次课外实践活动中,一个小组测量旗杆的高度如图,在A处用测角仪(离地高度为1.2米)测得旗杆顶端的仰角为15°,朝旗杆方向前进20米到B处,再次测得旗杆顶端的仰角为30°,求旗杆EG的高度.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.