已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足
(如图1所示).
(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;
(2)在图1中,连接AP.当AD=
,且点Q在线段AB上时,设点B、Q之间的距离为x,
,其中S
△APQ表示△APQ的面积,S
△PBC表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;
(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小.
考点分析:
相关试题推荐
两个反比例函数
和
(k
1>k
2>0)在第一象限内的图象如图所示,动点P在
的图象上,PC⊥x轴于点C,交
的图象于点A,PD⊥y轴于点D,交
的图象于点B.
(1)求证:四边形PAOB的面积是定值;
(2)当
时,求
的值;
(3)若点P的坐标为(5,2),△OAB、△ABP的面积分别记为S
△OAB′S
△ABP.设S=S
△OAB-S
△ABP′①求k
1的值;
②当k
2为何值时,S有最大值,最大值为多少?
查看答案
端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.
(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;
(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.
查看答案
如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8m,引桥水平跨度AC=8m.
(1)求水平平台DE的长度;
(2)若AD:BE=5:3,求与地面垂直的平台立柱GH的高度.
(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75)
查看答案
先化简,再求值:
,其中x=-
.
查看答案