满分5 > 初中数学试题 >

如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC...

如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=manfen5.com 满分网时,求线段BG的长.
manfen5.com 满分网
(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF; (2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF; ②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM=AB=,然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长. 解(1)BD=CF成立. 理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形, ∴AB=AC,AD=AF,∠BAC=∠DAF=90°, ∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC, ∴∠BAD=∠CAF, 在△BAD和△CAF中, ∴△BAD≌△CAF(SAS). ∴BD=CF.…(3分) (2)①证明:设BG交AC于点M. ∵△BAD≌△CAF(已证), ∴∠ABM=∠GCM. ∵∠BMA=∠CMG, ∴△BMA∽△CMG. ∴∠BGC=∠BAC=90°. ∴BD⊥CF.…(6分) ②过点F作FN⊥AC于点N. ∵在正方形ADEF中,AD=DE=, ∴AE==2, ∴AN=FN=AE=1. ∵在等腰直角△ABC 中,AB=4, ∴CN=AC-AN=3,BC==4. ∴在Rt△FCN中,tan∠FCN==. ∴在Rt△ABM中,tan∠ABM==tan∠FCN=. ∴AM=AB=. ∴CM=AC-AM=4-=,BM==.…(9分) ∵△BMA∽△CMG, ∴. ∴. ∴CG=.…(11分) ∴在Rt△BGC中,BG==.…(12分)
复制答案
考点分析:
相关试题推荐
某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?
查看答案
我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如下统计图表,如图,请你结合图表所给信息解答下列问题:
等级A(优秀)B(良好)C(合格)D(不合格)
人数200400280
(1)请将上面表格中缺少的数据补充完整;
(2)扇形统计图中“A”部分所对应的圆心角的度数是______
(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为______人;
(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.

manfen5.com 满分网 查看答案
如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=manfen5.com 满分网的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-manfen5.com 满分网<0的解集.(直接写出答案)

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x=3
查看答案
如图,等腰梯形ABCD中,AD∥BC,延长BC到E,使CE=AD.
(1)用尺规作图法,过点D作DM⊥BE,垂足为M(不写作法,保留作图痕迹);
(2)判断BM、ME的大小关系,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.