满分5 > 初中数学试题 >

已知抛物线C1的函数解析式为y=ax2+bx-3a(b<0),若抛物线C1经过点...

已知抛物线C1的函数解析式为y=ax2+bx-3a(b<0),若抛物线C1经过点(0,-3),方程ax2+bx-3a=0的两根为x1,x2,且|x1-x2|=4.
(1)求抛物线C1的顶点坐标.
(2)已知实数x>0,请证明x+manfen5.com 满分网≥2,并说明x为何值时才会有x+manfen5.com 满分网=2.
(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90°,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.
(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为manfen5.com 满分网
(1)求抛物线的顶点坐标,需要先求出抛物线的解析式,即确定待定系数a、b的值.已知抛物线图象与y轴交点,可确定解析式中的常数项(由此得到a的值);然后从方程入手求b的值,题干给出了两根差的绝对值,将其进行适当变形(转化为两根和、两根积的形式),结合根与系数的关系即可求出b的值. (2)x•=1,因此将x+配成完全平方式,然后根据平方的非负性即可得证. (3)结合(1)的抛物线的解析式以及函数的平移规律,可得出抛物线C2的解析式;在Rt△OAB中,由勾股定理可确定m、n的关系式,然后用m列出△AOB的面积表达式,结合不等式的相关知识可确定△OAB的最小面积值以及此时m的值,进而由待定系数法确定一次函数OA的解析式. 【解析】 (1)∵抛物线过(0,-3)点,∴-3a=-3 ∴a=1 ∴y=x2+bx-3 ∵x2+bx-3=0的两根为x1,x2且|x1-x2|=4 ∴|x1-x2|==4,且b<0 ∴b=-2 ∴y=x2-2x-3=(x-1)2-4 ∴抛物线C1的顶点坐标为(1,-4). (2)∵x>0,∴x+-2=(-)2≥0 ∴x+≥2,显然当x=1时,才有x+=2. (3)由平移知识易得C2的解析式为:y=x2 ∴A(m,m2),B(n,n2) ∵△AOB为直角三角形, ∴OA2+OB2=AB2 ∴m2+m4+n2+n4=(m-n)2+(m2-n2)2 化简得:m n=-1 ∴S△AOB== ==(m+)≥•2=1 ∴S△AOB的最小值为1,此时m=1,A(1,1) ∴直线OA的一次函数解析式为y=x.
复制答案
考点分析:
相关试题推荐
如图,AB是半圆O的直径,AB=2.射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.
(1)求证:△ABC∽△OFB;
(2)当△ABD与△BFO的面枳相等时,求BQ的长;
(3)求证:当D在AM上移动时(A点除外),点Q始终是线段BF的中点.

manfen5.com 满分网 查看答案
一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行使的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行使的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究.
解读信息:
(1)甲,乙两地之间的距离为______km;
(2)线段AB的解析式为______;线段OC的解析式为______
问题解决:
(3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数图象.manfen5.com 满分网
查看答案
如图,直角三角形纸片ABC中,AB=3,AC=4D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn-1Dn-2的中点为Dn-1,第n次将纸片折叠,使点A与点Dn-1重合,折痕与AD交于点Pn(n>2),则AP6的长为   
manfen5.com 满分网 查看答案
如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随着x的增大而增大.正确的说法有    .(请写出所有正确的序号)
manfen5.com 满分网 查看答案
一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为     (结果保留π)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.