满分5 > 初中数学试题 >

如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1c...

如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.
(1)求A、B两点的坐标;
(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.
manfen5.com 满分网
(1)先连接AD,设点A的坐标为(a,0),由图2得出DO=6-AO和S△AOD=4,即可得出DO•AO=4,从而得出a的值,再根据图2得出A的坐标,再延长CB交x轴于M,根据D点的坐标得出AB=5cm,CB=1cm,即可求出AM==4,从而得出点B的坐标. (2)先设点P(x,y),连PC、PO,得出S四边形DPBC的面积,再进行整理,即可得出x与y的关系,再由A,B点的坐标,求出直线AB的函数关系式,从而求出x、y的值,即可得出P点的坐标,再设直线PD的函数关系式为y=kx+4,求出K的值,即可得出直线PD的函数关系式. 【解析】 (1)连接AD,设点A的坐标为(a,0), 由图2知,则DO+OA=6cm, DO=6-AO=6-a, 由图2知S△AOD=4, ∴DO•AO=a(6-a)=4, 整理得:a2-6a+8=0, 解得a=2或a=4, 由图2知,DO>3, ∴AO<3, ∴a=2, ∴A的坐标为(2,0), D点坐标为(0,4), 在图1中,延长CB交x轴于M, 由图2,知AB=5cm,CB=1cm, ∴MB=3, ∴AM==4. ∴OM=6, ∴B点坐标为(6,3); (2)因为P在OA、BC、CD上时,直线PD都不能将五边形OABCD分成面积相等的两部分, 所以只有点P一定在AB上时,才能将五边形OABCD分成面积相等的两部分, 设点P(x,y),连PC、PO,则 S四边形DPBC=S△DPC+S△PBC=S五边形OABCD=(S矩形OMCD-S△ABM)=9, ∴6×(4-y)+×1×(6-x)=9, 即x+6y=12, 同理,由S四边形DPAO=9可得2x+y=9, 由, 解得x=,y=. ∴P(,), 设直线PD的函数关系式为y=kx+4(k≠0), 则=k+4, ∴k=-, ∴直线PD的函数关系式为y=-x+4.
复制答案
考点分析:
相关试题推荐
为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.
(1)求乙、丙两种树每棵各多少元?
(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?
(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?
查看答案
如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=manfen5.com 满分网在第一象限内交于点C(1,m).
(1)求m和n的值;
(2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线y=manfen5.com 满分网交于点P、Q,求△APQ的面积.

manfen5.com 满分网 查看答案
(1)已知:甲篮球队投3分球命中的概率为manfen5.com 满分网,投2分球命中的概率为manfen5.com 满分网,某场篮球比赛在离比赛结束还有1min,时,甲队落后乙队5分,估计在最后的1min,内全部投3分球还有6次机会,如果全部投2分球还有3次机会,请问选择上述哪一种投篮方式,甲队获胜的可能性大?说明理由.
(2)现在“校园手机”越来越受到社会的关注,为此某校九年级(1)班随机抽查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了统计图(如图所示,图②表示家长的三种态度的扇形图)
manfen5.com 满分网
1)求这次调查的家长人数,并补全图①;
2)求图②表示家长“赞成”的圆心角的度数;
3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?
查看答案
先化简,再计算:
(1)(a+2b)(a-2b)+(a+2b)2-4ab,其中a=1,b=manfen5.com 满分网
(2)manfen5.com 满分网,其中x=manfen5.com 满分网+1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.