满分5 > 初中数学试题 >

如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M...

如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2manfen5.com 满分网,sin∠BCP=manfen5.com 满分网,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.

manfen5.com 满分网
(1))根据∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中∠ABC+∠BAC+∠BCA=180°,得到2∠BCP+2∠BCA=180°,从而得到∠BCP+∠BCA=90°,证得直线CP是⊙O的切线. (2)作BD⊥AC于点D,得到BD∥PC,从而利用sin∠BCP=sin∠DBC===,求得DC=2,再根据勾股定理求得点B到AC的距离为4. (3)先求出AC的长度,然后利用BD∥PC的比例线段关系求得CP的长度,再由勾股定理求出AP的长度,从而求得△ACP的周长. 【解析】 (1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180° ∴2∠BCP+2∠BCA=180°, ∴∠BCP+∠BCA=90°, ∴直线CP是⊙O的切线. (2)如右图,作BD⊥AC于点D, ∵PC⊥AC ∴BD∥PC ∴∠PCB=∠DBC ∵BC=2,sin∠BCP=, ∴sin∠BCP=sin∠DBC===, 解得:DC=2, ∴由勾股定理得:BD=4, ∴点B到AC的距离为4. (3)如右图,连接AN, ∵AC为直径, ∴∠ANC=90°, ∴Rt△ACN中,AC==5, 又CD=2, ∴AD=AC-CD=5-2=3. ∵BD∥CP, ∴, ∴CP=. 在Rt△ACP中,AP==, AC+CP+AP=5++=20, ∴△ACP的周长为20.
复制答案
考点分析:
相关试题推荐
已知:关于x的方程:mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取何值时,方程恒有实数根;
(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式.
查看答案
现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.
(1)设A地到甲地运送蔬菜x吨,请完成下表:
运往甲地(单位:吨)运往乙地(单位:吨)
Ax______
B____________
(2)设总运费为W元,请写出W与x的函数关系式.
(3)怎样调运蔬菜才能使运费最少?
查看答案
如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

manfen5.com 满分网 查看答案
某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示,但不完整的统计图.根据图示信息,解答下列问题:manfen5.com 满分网

(1)求被抽查学生人数及课外阅读量的众数;
(2)求扇形统计图汇总的a、b值;
(3)将条形统计图补充完整;
(4)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人?
查看答案
先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.