满分5 >
初中数学试题 >
下列计算中,结果正确的是( ) A.a2•a3=a6 B.(2a)•(3a)=6...
下列计算中,结果正确的是( )
A.a2•a3=a6
B.(2a)•(3a)=6a
C.(a2)3=a6
D.a6÷a2=a3
考点分析:
相关试题推荐
在0,-2,1,3这四数中,最小的数是( )
A.-2
B.0
C.1
D.3
查看答案
如图,抛物线y=ax
2+bx(a>0)与反比例函数
的图象相交于点A,B.已知点A的坐标为(1,4),点B(t,q)在第三象限内,且△AOB的面积为3(O为坐标原点).
(1)求反比例函数的解析式;
(2)用含t的代数式表示直线AB的解析式;
(3)求抛物线的解析式;
(4)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,把△AOB绕点O顺时针旋转90°,请在图②中画出旋转后的三角形,并直接写出所有满足△EOC∽△AOB的点E的坐标.
查看答案
阅读以下的材料:
如果两个正数a,b,即a>0,b>0,则有下面的不等式:
当且仅当a=b时取到等号
我们把
叫做正数a,b的算术平均数,把
叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:
例:已知x>0,求函数
的最小值.
【解析】
另
,则有
,得
,当且仅当
时,即x=2时,函数有最小值,最小值为2.
根据上面回答下列问题
①已知x>0,则当x=______
查看答案
为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,
(1)求购进A,B两种纪念品每件需多少元?
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
查看答案
如图,⊙O的直径AB=6,C为圆周上一点,AC=3,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.
(1)求∠AEC的度数;
(2)求证:四边形OBEC是菱形.
查看答案