满分5 > 初中数学试题 >

在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A(-1,0),B...

在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(-3,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)点Q在直线BC上方的抛物线上,且点Q到直线BC的距离最远,求点Q坐标.

manfen5.com 满分网
(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值; (2)根据(1)得到的函数解析式,可求出D、C的坐标;易证得△OBC是等腰Rt△,若过A作BC的垂线,设垂足为E,在Rt△ABE中,根据∠ABE的度数及AB的长即可求出AE、BE、CE的长;连接AC,设抛物线的对称轴与x轴的交点为F,若∠APD=∠ACB,那么△AEC与△AFP,根据得到的比例线段,即可求出PF的长,也就求得了P点的坐标; (3)当Q到直线BC的距离最远时,△QBC的面积最大(因为BC是定长),可过Q作y轴的平行线,交BC于S;根据B、C的坐标,易求出直线BC的解析式,可设出Q点的坐标,根据抛物线和直线BC的解析式,分别表示出Q、S的纵坐标,即可得到关于QS的长以及Q点横坐标的函数关系式,以QS为底,B、C横坐标差的绝对值为高可得到△QBC的面积,由于B、C横坐标差的绝对值为定值,那么QS最长时,△QBC的面积最大,此时Q离BC的距离最远;可根据上面得到的函数的性质求出QS的最大值及对应的Q点横坐标,然后将其代入抛物线的解析式中,即可求出Q点的坐标. 【解析】 (1)∵抛物线y=-x2+bx+c经过A(-1,0),B(-3,0), ∴ 解得: ∴抛物线的解析式为y=-x2-4x-3(4分) (2)由y=-x2-4x-3 可得D(-2,1),C(0,-3) ∴OB=3,OC=3,OA=1,AB=2 可得△OBC是等腰直角三角形 ∴∠OBC=45°,(5分) 如图,设抛物线对称轴与x轴交于点F, ∴ 过点A作AE⊥BC于点E ∴∠AEB=90° 可得,(6分) 在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF, ∴△AEC∽△AFP(7分) ∴,, 解得PF=2(8分) ∵点P在抛物线的对称轴上, ∴点P的坐标为(-2,2)或(-2,-2)(9分) (3)设直线BC的解析式y=kx+b, 直线BC经过B(-3,0),C(0,-3), ∴ 解得:k=-1,b=-3, ∴直线BC的解析式y=-x-3(10分) 设点Q(m,n),过点Q作QH⊥BC于H,并过点Q作QS∥y轴交直线BC于点S,则S点坐标为(m,-m-3) ∴QS=n-(-m-3)=n+m+3(11分) ∵点Q(m,n)在抛物线y=-x2-4x-3上, ∴n=-m2-4m-3 ∴QS=-m2-4m-3+m+3 =-m2-3m = 当m=时,QS有最大值(12分) ∵BO=OC,∠BOC=90°, ∴∠OCB=45° ∵QS∥y轴, ∴∠QSH=45° ∴△QHS是等腰直角三角形; ∴当斜边QS最大时QH最大;(13分) ∵当m=时,QS最大, ∴此时n=-m2-4m-3=-+6-3=; ∴Q(-,);(14分) ∴Q点的坐标为(-,)时,点Q到直线BC的距离最远. (注:1、如果学生有不同的解题方法,只要正确,可参考评分标准,酌情给分;2、对第(3)题,如果只用△=0求解,扣(2分).理由:△=0判断只有一个交点,不是充分条件)
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠B=90°,BC=5manfen5.com 满分网,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.

manfen5.com 满分网 查看答案
某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.
按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)
查看答案
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为18,cosB=manfen5.com 满分网,求DE的长.

manfen5.com 满分网 查看答案
我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
manfen5.com 满分网
(1)本次调查中,张老师一共调査了______名同学,其中C类女生有______名,D类男生有______名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案
已知:如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E.
(1)求证:AE=BE;
(2)若∠AEC=45°,AC=1,求CE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.