在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米
(1)求∠DCB的度数及梯形ABCD与△PQR的高?
(2)当t=4时,求S的值;
(3)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.
考点分析:
相关试题推荐
商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件.
(1)若商场每天要盈利1200元,每件应降价多少元?
(2)设每件降价x元,每天盈利y元,每件售价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
查看答案
一个不透明的布袋内装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.
(1)从布袋中随机地取出一个小球,求小球上所标的数字恰好为4的概率;
(2)从布袋中随机地取出一个小球,记录小球上所标的数字为x,不将取出的小球放回布袋,再随机地取出一个小球,记录小球上所标的数字为y,这样就确定点P的一个坐标为(x,y),用树状图或表格说明P落在直线y=x+1上的概率.
查看答案
如图在△ABC中,∠A=45°,tanB=3,BC=
,求AB的长.
查看答案
如图,在平行四边形ABCD中,点E、F是对角线BD上两点,且BF=DE.
(1)写出图中每一对全等的三角形;
(2)证明(1)中的一对三角形全等.
查看答案
解不等式组
,并把解集在数轴上表示出来.
查看答案