(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,
,求证:∠B=30°,请你完成证明过程.
(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.
(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.
考点分析:
相关试题推荐
在平面直角坐标系xOy中,已知抛物线y=-
+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=
.
(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若
=
时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG与△ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由.
查看答案
图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾斜角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求
(1)真空管上端B到AD的距离(结果精确到0.01米);
(2)铁架垂直管CE的长(结果精确到0.01米).
查看答案
某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:
销售额(万元) | 25 | 26 | 21 | 17 | 28 | 19 | 20 | 30 |
频数(人数) | 3 | 5 | 3 | 1 | 2 | 1 | 3 | 2 |
(1)请根据以上信息计算这组数据的三个统计量:平均数、中位数、众数.
(2)请你选择其中一个统计量作为月销售额目标,并按此销售目标找出这20名营业员能完成目标的有几位?
(3)若该商场家电销售部共有120名营业员,按(2)中确定标准请估计出该商场营业员中完成目标的有几位?
查看答案
把一张边长为40cm的正方形硬纸板,进行适当地裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.要使折成的长方体盒子底面周长为120cm.那么剪掉的正方形的边长为多少?
查看答案
如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=
(x>0)的图象上,点D的坐标为(4,3).
(1)求k的值.
(2)若将菱形ABCD向右平移,使点D落在反比例函数y=
(x>0)的图象上,求菱形ABCD平移的距离.
查看答案