满分5 > 初中数学试题 >

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,...

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标; (2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式; (3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案. 【解析】 (1)过点B作BD⊥x轴,垂足为D, ∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°, ∴∠BCD=∠CAO,(1分) 又∵∠BDC=∠COA=90°,CB=AC, ∴△BCD≌△CAO,(2分) ∴BD=OC=1,CD=OA=2,(3分) ∴点B的坐标为(-3,1);(4分) (2)抛物线y=ax2+ax-2经过点B(-3,1), 则得到1=9a-3a-2,(5分) 解得a=, 所以抛物线的解析式为y=x2+x-2;(7分) (3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形: ①若以点C为直角顶点; 则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分) 过点P1作P1M⊥x轴, ∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°, ∴△MP1C≌△DBC.(10分) ∴CM=CD=2,P1M=BD=1,可求得点P1(1,-1);(11分) ②若以点A为直角顶点; 则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分) 过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分) ∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分) 经检验,点P1(1,-1)与点P2(2,1)都在抛物线y=x2+x-2上.(16分)
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.
(1)求证:BA•BM=BC•BN;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.

manfen5.com 满分网 查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.
manfen5.com 满分网
(1)求坡高CD;
(2)求斜坡新起点A与原起点B的距离(精确到0.1米).
查看答案
如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.
(1)求tan∠BOA的值;
(2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;
(3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B'的坐标为(2,-2),在坐标系中作出△O′A′B′,并写出点O′、A′的坐标.

manfen5.com 满分网 查看答案
为了了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:
分数段频数频率
60≤x<70300.1
70≤x<8090n
80≤x<90m0.4
90≤x≤100600.2
请根据以上图表中提供的信息,解答下列问题:
(1)本次调查的样本容量为______
(2)在表中:m=______,n=______
(3)补全频数分布直方图;
(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在______分数段内;
(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是______

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.