如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x
2-4x-2经过A,B两点.
(1)求A点坐标及线段AB的长;
(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.
①当PQ⊥AC时,求t的值;
②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.
考点分析:
相关试题推荐
如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
查看答案
某高科技公司根据市场需求,计划生产A、B两种型号的医疗器械,其部分信息如下:
信息一:A、B两种型号的医疔器械共生产80台.
信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.
信息三:A、B两种医疗器械的生产成本和售价如下表:
型号 | A | B |
成本(万元/台) | 20 | 25 |
售价(万元/台) | 24 | 30 |
根据上述信息.解答下列问题:
(1)该公司对此两种医疗器械有哪几种生产方案?哪种生产方案能获得最大利润?
(2)根据市场调查,每台A型医疗器械的售价将会提高a万元(a>0).每台B型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?(注:利润=售价-成本)
查看答案
已知A(8,0),B(0,6),C(0,-2),连接AB,过点C的直线l与AB交于点P.
(1)如图1,当PB=PC时,求点P的坐标;
(2)如图2,设直线l与x轴所夹的锐角为α,且tanα=
,连接AC,求直线l与x轴的交点E的坐标及△PAC的面积.
查看答案
已知关于x、y的方程组
的解满足x>y>0,化简|a|+|3-a|.
查看答案
阅读题例,解答下题:
例解方程x
2-|x-1|-1=0
【解析】
(1)当x-1≥0,即x≥1时x
2-(x-1)-1=0x
2-x=0
(2)当x-1<0,即x<1时x
2+(x-1)-1=0x
2+x-2=0
解得:x
1=0(不合题设,舍去),x
2=1
解得x
1=1(不合题设,舍去)x
2=-2
综上所述,原方程的解是x=1或x=-2
依照上例解法,解方程x
2+2|x+2|-4=0.
查看答案