(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论.
(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,继而可得出半径.
(1)证明:过O点作OE⊥CD于点E,
∵AM切⊙O于点A,
∴OA⊥AD,
又∵DO平分∠ADC,
∴OE=OA,
∵OA为⊙O的半径,
∴OE是⊙O的半径,且OE⊥DC,
∴CD是⊙O的切线.
(2)【解析】
过点D作DF⊥BC于点F,
∵AM,BN分别切⊙O于点A,B,
∴AB⊥AD,AB⊥BC,
∴四边形ABFD是矩形,
∴AD=BF,AB=DF,
又∵AD=4,BC=9,
∴FC=9-4=5,
∵AM,BN,DC分别切⊙O于点A,B,E,
∴DA=DE,CB=CE,
∴DC=AD+BC=4+9=13,
在Rt△DFC中,DC2=DF2+FC2,
∴DF==12,
∴AB=12,
∴⊙O的半径R是6.