满分5 > 初中数学试题 >

如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C...

如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.
(1)求EG的长;
(2)求证:CF=AB+AF.

manfen5.com 满分网
(1)根据BD⊥CD,∠DCB=45°,得到∠DBC=∠DCB,求出BD=CD=2,根据勾股定理求出BC=2,根据CE⊥BE,点G为BC的中点即可求出EG; (2)在线段CF上截取CH=BA,连接DH,根据BD⊥CD,BE⊥CD,推出∠EBF=∠DCF,证出△ABD≌△HCD,得到CD=BD,∠ADB=∠HDC,根据AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠HDB,证出△ADF≌△HDF,即可得到答案. (1)【解析】 ∵BD⊥CD,∠DCB=45°, ∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC==2, ∵CE⊥BE, ∠BEC=90°, ∵点G为BC的中点, ∴EG=BC=(直角三角形斜边上中线的性质). 答:EG的长是. (2)证明:在线段CF上截取CH=BA,连接DH, ∵BD⊥CD,BE⊥CE, ∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°, ∵∠EFB=∠DFC, ∴∠EBF=∠DCF, ∵DB=CD,BA=CH, ∴△ABD≌△HCD, ∴AD=DH,∠ADF=∠HDC, ∵AD∥BC, ∴∠ADF=∠DBC=45°, ∴∠HDC=45°,∴∠HDF=∠BDC-∠HDC=45°, ∴∠ADF=∠HDF, ∵AD=HD,DF=DF, ∴△ADF≌△HDF, ∴AF=HF, ∴CF=CH+HF=AB+AF, ∴CF=AB+AF. (解法二)证明:延长BA与CD延长线交于M, ∵△BFE和△CFD中, ∠BEF=∠CDF=90°,∠BFE=∠CFD, ∴∠MBD=∠FCD, ∵在△BCD中,∠DCB=45°,BD⊥CD, ∴∠BDC=90°, ∴∠DBC=45°=∠DCB, ∴BD=CD, △BMD和△CFD中, ∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD, ∴△BMD≌△CFD, ∴CF=BM=AB+AM,DM=DF, ∵AD∥BC,∠ADF=∠DBC=45°,∠BDM=90°, ∴∠ADM=∠ADF=45°, 在△AFD和△AMD中 ∵, ∴△AFD≌△AMD, ∴AM=AF, ∴CF=BM=AB+AM=AB+AF,即CF=AB+AF.
复制答案
考点分析:
相关试题推荐
为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
manfen5.com 满分网
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
查看答案
如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数manfen5.com 满分网(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE=manfen5.com 满分网
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x满足x2-x-1=0.
查看答案
如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.