满分5 > 初中数学试题 >

如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)...

如图,抛物线manfen5.com 满分网的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.

manfen5.com 满分网
(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标. (3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M. 【解析】 (1)将B(4,0)代入抛物线的解析式中,得: 0=16a-×4-2,即:a=; ∴抛物线的解析式为:y=x2-x-2. (2)由(1)的函数解析式可求得:A(-1,0)、C(0,-2); ∴OA=1,OC=2,OB=4, 即:OC2=OA•OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,-2),可得直线BC的解析式为:y=x-2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程: x+b=x2-x-2,即:x2-2x-2-b=0,且△=0; ∴4-4×(-2-b)=0,即b=-4; ∴直线l:y=x-4. 所以点M即直线l和抛物线的唯一交点,有: , 解得: 即 M(2,-3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB-S△OCB=×2×(2+3)+×2×3-×2×4=4.
复制答案
考点分析:
相关试题推荐
如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE.
(1)求证:CF是⊙O的切线;
(2)若sin∠BAC=manfen5.com 满分网,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.
(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);
(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?
(3)从节约开支的角度来看,你认为采用哪种方案更合算?
查看答案
如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE;
(2)若∠DBC=30°,BO=4,求四边形ABED的面积.

manfen5.com 满分网 查看答案
2012年2月,国务院发布新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,环境检测中心今年在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:
类别组别PM2.5日平均浓度值(微克/立方米)频数频率
A115~3020.08
230~4530.12
B345~60ab
460~7550.20
C575~906c
D690~10540.16
           合计以上分组均含最小值,不含最大值251.00
根据图表中提供的信息解答下列问题:
(1)统计表中的a=______,b=______,c=______
(2)在扇形统计图中,A类所对应的圆心角是______度;
(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?

manfen5.com 满分网 查看答案
先化简,后求值:manfen5.com 满分网,其中x=-4.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.