根据等腰直角三角形的性质及旋转的性质,运用“ASA”证明△ADE≌△CDF,得DE=DF.则有DE:DA′=DF:DC′,得EF∥A′C′.根据相似三角形性质求解.
【解析】
∵△ABC是等腰直角三角形,CD是斜边AB的中线,
∴CD⊥AB,CD=AD,∠A=∠BCD=45°.
又∵∠ADE=90°-∠CDE=∠CDF,
∴△ADE≌△CDF (ASA)
∴DE=DF.
∵DA=DA′,DC=DC′,
∴DE:DA′=DF:DC′,
∴EF∥A′C′.
∴△DEF∽△DA′C′,
∴.
∵,则 ,
∴.
故答案为 .