满分5 > 初中数学试题 >

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF...

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)
manfen5.com 满分网
(1)问:始终与△AGC相似的三角形有____________
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形.
(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论. (2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可. (3)此题要采用分类讨论的思想,当CG<BC时,当CG=BC时,当CG>BC时分别得出即可. 【解析】 (1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合, ∵∠H+∠HAC=45°,∠HAC+∠CAG=45°, ∴∠H=∠CAG, ∵∠ACG=∠B=45°, ∴△AGC∽△HAB, ∴同理可得出:始终与△AGC相似的三角形有△HAB和△HGA; 故答案为:△HAB和△HGA. (2)∵△AGC∽△HAB, ∴AC:HB=GC:AB,即9:y=x:9, ∴y=(0<x<9), ∵AB=AC=9,∠BAC=90°, ∴BC===9. 答:y关于x的函数关系式为y=(0<x<9). (3)①当CG<BC时,∠GAC=∠H<∠HAG, ∴AG<GH, ∵GH<AH, ∴AG<CH<GH, 又∵AH>AG,AH>GH, 此时,△AGH不可能是等腰三角形, ②当CG=BC时,G为BC的中点,H与C重合,△AGH是等腰三角形, 此时,GC=,即x=, ③当CG>BC时,由(1)△AGC∽△HGA, 所以,若△AGH必是等腰三角形,只可能存在GH=AH, 若GH=AH,则AC=CG,此时x=9, 如图(3),当CG=BC时, 注意:DF才旋转到与BC垂直的位置, 此时B,E,G重合,∠AGH=∠GAH=45°, 所以△AGH为等腰三角形,所以CG=9. 综上所述,当x=9或x=或9时,△AGH是等腰三角形.
复制答案
考点分析:
相关试题推荐
如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.
manfen5.com 满分网
(1)表中第8行的最后一个数是______,它是自然数______的平方,第8行共有______个数;
(2)用含n的代数式表示:第n行的第一个数是______,最后一个数是______,第n行共有______个数;
(3)求第n行各数之和.
查看答案
如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数;
(2)求AB的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:
(1)此次调查的总体是什么?
(2)补全频数分布直方图;
(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?
查看答案
如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.