首先取AC的中点O,过点O作MN∥EF,PQ∥EH,由题意可得PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,PL,KN,OM,OQ分别是各半圆的半径,OL,OK是△ABC的中位线,又由在Rt△ABC中,∠B=90°,AB=6,BC=8,即可求得个线段长,继而求得答案.
【解析】
取AC的中点O,过点O作MN∥EF,PQ∥EH,
∵四边形EFGH是矩形,
∴EH∥PQ∥FG,EF∥MN∥GH,∠E=∠H=90°,
∴PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,
∵AB∥EF,BC∥FG,
∴AB∥MN∥GH,BC∥PQ∥FG,
∴AL=BL,BK=CK,
∴OL=BC=×8=4,OK=AB=×6=3,
∵矩形EFGH的各边分别与半圆相切,
∴PL=AB=×6=3,KN=BC=×8=4,
在Rt△ABC中,AC==10,
∴OM=OQ=AC=5,
∴EH=FG=PQ=PL+OL+OQ=3+4+5=12,EF=GH=MN=OM+OK+NK=5+3+4=12,
∴矩形EFGH的周长是:EF+FG+GH+EH=12+12+12+12=48.
故答案为:48.