“数学迷”小楠通过从“特殊到一般”的过程,对倍角三角形(一个内角是另一个内角的2倍的三角形)进行研究.得出结论:如图1,在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,如果∠A=2∠B,那么a
2-b
2=bc.
下面给出小楠对其中一种特殊情形的一种证明方法.
已知:如图2,在△ABC中,∠A=90°,∠B=45°.
求证:a
2-b
2=bc.
证明:如图2,延长CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
∴
,即
∴a
2-b
2=bc
根据上述材料提供的信息,请你完成下列情形的证明(用不同于材料中的方法也可以):
已知:如图1,在△ABC中,∠A=2∠B.
求证:a
2-b
2=bc.
考点分析:
相关试题推荐
一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈
,tan21.3°≈
,sin63.5°≈
,tan63.5°≈2)
查看答案
如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-
x(0≤x≤5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是
.
查看答案
如图,在锐角△ABC中,AB=4
,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是
.
查看答案
为落实“两免一补”政策,某市2011年投入教育经费2500万元,预计2013年要投入教育经费3600万元.已知2011年至2013年的教育经费投入以相同的百分率逐年增长,则2012年该市要投入的教育经费为
万元.
查看答案