如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.
(1)求证:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
,求PE的长.
考点分析:
相关试题推荐
某市今年的理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生从三个物理实验题(题签分别用代码W
1,W
2,W
3表示)、三个化学物实验题(题签分别用代码H
1、H
2、H
3表示),二个生物实验题(题签分别用代码S
1,S
2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从他们中随机地各抽取一个题签.
(1)请你用画树状图的方法,写出他恰好抽到H
2的情况;
(2)求小亮抽到的题签代码的下标(例如“W
2”的下标为“2”)之和为7的概率是多少?
查看答案
如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A
1B
1C
1,然后将△A
1B
1C
1绕点A
1顺时针旋转90°得到△A
1B
2C
2.
(1)在网格中画出△A
1B
1C
1和△A
1B
2C
2;
(2)计算线段AC在变换到A
1C
2的过程中扫过区域的面积(重叠部分不重复计算)
查看答案
“数学迷”小楠通过从“特殊到一般”的过程,对倍角三角形(一个内角是另一个内角的2倍的三角形)进行研究.得出结论:如图1,在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,如果∠A=2∠B,那么a
2-b
2=bc.
下面给出小楠对其中一种特殊情形的一种证明方法.
已知:如图2,在△ABC中,∠A=90°,∠B=45°.
求证:a
2-b
2=bc.
证明:如图2,延长CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
∴
,即
∴a
2-b
2=bc
根据上述材料提供的信息,请你完成下列情形的证明(用不同于材料中的方法也可以):
已知:如图1,在△ABC中,∠A=2∠B.
求证:a
2-b
2=bc.
查看答案
一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈
,tan21.3°≈
,sin63.5°≈
,tan63.5°≈2)
查看答案