满分5 > 初中数学试题 >

下列运算正确的是( ) A.x•x2=x2 B.(xy)2=xy2 C.(x2)...

下列运算正确的是( )
A.x•x2=x2
B.(xy)2=xy2
C.(x23=x6
D.x10÷x2=x5
A、同底数幂的乘法,底数不变,指数相加; B、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘; C、幂的乘方,底数不变指数相乘. D、同底数幂的除法,底数不变指数相减. 【解析】 A、x•x2=x1+2=x3;故本选项错误; B、(xy)2=x2y2;故本选项错误; C、(x2)3=x2×3=x6;故本选项正确; D、x10÷x2=x10-2=x8;故本选项错误. 故选C.
复制答案
考点分析:
相关试题推荐
如图中几何体的主视图是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
3的倒数是( )
A.manfen5.com 满分网
B.-manfen5.com 满分网
C.3
D.-3
查看答案
如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;
(3)设点E是抛物线上异于点A,B的一个动点,过点E作x轴的平行线交抛物线于另一点F.以EF为直径画⊙Q,则在点E的运动过程中,是否存在与x轴相切的⊙Q?若存在,求出此时点E的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:manfen5.com 满分网AB•r1+manfen5.com 满分网AC•r2=manfen5.com 满分网AB•h,∴r1+r2=h
(1)理解与应用
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在    三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,试证明:manfen5.com 满分网
(2)类比与推理
边长为2的正方形内任意一点到各边的距离的和等于______
(3)拓展与延伸
若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为r1,r2,…rn,请问r1+r2+…rn是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值.
manfen5.com 满分网
查看答案
为了探索代数式manfen5.com 满分网的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则manfen5.com 满分网manfen5.com 满分网,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得manfen5.com 满分网的最小值等于______,此时x=______
(2)请你根据上述的方法和结论,试构图求出代数式manfen5.com 满分网的最小值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.