满分5 > 初中数学试题 >

如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(-5,a)两点.A...

如图,已知直线AB与x轴交于点C,与双曲线manfen5.com 满分网交于A(3,manfen5.com 满分网)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.
(1)求点B的坐标及直线AB的解析式;
(2)判断四边形CBED的形状,并说明理由.

manfen5.com 满分网
(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答; (2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形. 【解析】 (1)∵双曲线过A(3,), ∴k=20. 把B(-5,a)代入,得 a=-4. ∴点B的坐标是(-5,-4).(2分) 设直线AB的解析式为y=mx+n, 将A(3,)、B(-5,-4)代入,得 , 解得:, ∴直线AB的解析式为:;(4分) (2)四边形CBED是菱形.理由如下:(5分) 点D的坐标是(3,0),点C的坐标是(-2,0). ∵BE∥x轴, ∴点E的坐标是(0,-4). 而CD=5,BE=5,且BE∥CD. ∴四边形CBED是平行四边形.(6分) 在Rt△OED中,ED2=OE2+OD2, ∴ED====5, ∴ED=CD. ∴平行四边形CBED是菱形.(8分)
复制答案
考点分析:
相关试题推荐
据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).
(1)图2中所缺少的百分数是______
(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是______(填写年龄段);
(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是______
(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有______名.
manfen5.com 满分网
查看答案
已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2
(1)求k的取值范围;
(2)若|x1+x2|=x1x2-1,求k的值.
查看答案
四条线段a,b,c,d如图,a:b:c:d=1:2:3:4
(1)选择其中的三条线段为边作一个三角形(尺规作图,要求保留作图痕迹,不必写出作法);
(2)任取三条线段,求以它们为边能作出三角形的概率.

manfen5.com 满分网 查看答案
先化简再求值:manfen5.com 满分网,其中x=tan60°-1.
查看答案
如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.