满分5 > 初中数学试题 >

如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒的速度...

如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒的速度从A点出发,沿AC向点C移动.同时,动点Q以1米/秒的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.
(1)①当t=2.5秒时,求△CPQ的面积;
②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;
(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,写出t的值;
(3)以P为圆心,PA为半径的圆与以Q为圆心,QC为半径的圆相切时,求出t的值.

manfen5.com 满分网
(1)过点P,作PD⊥BC于D,利用30度的锐角所对的直角边等于斜边的一半,即可求得PD的长,然后利用三角形的面积公式即可求解; (2)分PC=QC和PC=QC两种情况进行讨论,求解; (3)PA为半径的圆与以Q为圆心,QC为半径的圆相切时,分为两圆外切和内切两种情况进行讨论.在直角△PFQ中利用勾股定理即可得到关于t的方程,从而求解. 【解析】 在Rt△ABC中,AB=6米,BC=8米,∴AC=10米 由题意得:AP=2t,则CQ=t,则PC=10-2t (1)①过点P,作PD⊥BC于D, ∵t=2.5秒时,AP=2×2.5=5米,QC=2.5米 ∴PD=AB=3米,∴S=•QC•PD=3.75平方米; ②过点Q,作QE⊥PC于点E, 易知Rt△QEC∽Rt△ABC, ∴=, 解得:QE=, ∴S=•PC•QE=•(10-2t)•=-+3t(0<t≤5) (2)当t=秒(此时PC=QC),秒(此时PQ=QC),或秒(此时PC=PQ)时,△CPQ为等腰三角形; ∵△ABC中,∠B=90°,AB=6米,BC=8米, ∴AC===10, 当PC=QC时,PC=10-2t,QC=t,即10-2t=t,解得t=秒; 当PQ=CQ时,如图1,过点Q作QE⊥AC,则CE=,CQ=t,可证△CEQ∽△CBA,故=,即=,解得t=秒; 当PC=PQ时,如图2,过点P作PE⊥BC,则CE=,PC=10-2t,可证△PCE∽△ACB,故=,即=,解得t=秒. (3)如图3,过点P作PF⊥BC于点F. 则△PCF∽△ACB ∴==,即== ∴PF=6-,FC=8- 则在直角△PFQ中,PQ2=PF2+FQ2=(6-)2+(8--t)2=t2-56t+100 如图4,当⊙P与⊙Q外切时,有PQ=PA+QC=3t,此时PQ2=t2-56t+100=9t2, 整理得:t2+70t-125=0 解得:t1=15-35,t2=-15-35<0(舍去) 故当⊙P与⊙Q外切时,t=(15-35)秒; 当⊙P与⊙Q内切时,PQ=PA-QC=t,此时, ∵PQ2=PF2+FQ2, ∴PQ2=t2-56t+100=t2 整理得:9t2-70t+125=0,解得:t1=,t2=5 故当⊙P与⊙Q内切时,t=秒或5秒.
复制答案
考点分析:
相关试题推荐
如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.
(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2.求CD的长.

manfen5.com 满分网 查看答案
某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:
空调机电冰箱
甲连锁店200170
乙连锁店160150
设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).
(1)求y关于x的函数关系式,并求出x的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?
查看答案
manfen5.com 满分网日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A处,观测到某港口城市P位于海检船的北偏西67.5°方向,海检船以21海里/时 的速度向正北方向行驶,下午2时海检船到达B处,这时观察到城市P位于海检船的南偏西36.9°方向,求此时海检船所在B处与城市P的距离?
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知直线AB与x轴交于点C,与双曲线manfen5.com 满分网交于A(3,manfen5.com 满分网)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.
(1)求点B的坐标及直线AB的解析式;
(2)判断四边形CBED的形状,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.