满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=3...

如图1,在平面直角坐标系中,已知点A(0,4manfen5.com 满分网),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒manfen5.com 满分网个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求manfen5.com 满分网出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(1)先在直角三角形AOB中,根据∠ABO的度数和OA的长,求出OB的长,即可得出B点的坐标,然后用待定系数法即可求出直线AB的解析式. (2)求等边三角形的边长就是求出PM的长,可在直角三角形PMB中,用t表示出BP的长,然后根据∠ABO的度数,求出PM的长. 当M、O重合时,可在直角三角形AOP中,根据OA的长求出AP的长,然后根据P点的速度即可求出t的值. (3)本题要分情况进行讨论: ①当N在D点左侧且E在PM右侧或在PM上时,即当0≤t≤1时,重合部分是直角梯形EGNO. ②当N在D点左侧且E在PM左侧时,即当1<t<2时,此时重复部分为五边形,(如图3)其面积可用△PMN的面积-△PIG的面积-△OMF的面积来求得.(也可用梯形ONGE的面积-三角形FEI的面积来求). ③当N、D重合时,即t=2时,此时M、O也重合,此时重合部分为等腰梯形. 根据上述三种情况,可以得出三种不同的关于重合部分面积与t的函数关系式,进而可根据函数的性质和各自的自变量的取值范围求出对应的S的最大值. 【解析】 (1)由OA=4,∠ABO=30°,得到OB=12, ∴B(12,0),设直线AB解析式为y=kx+b, 把A和B坐标代入得:, 解得:, 则直线AB的解析式为:y=-x+4. (2)∵∠AOB=90°,∠ABO=30°, ∴AB=2OA=8, ∵AP=t, ∴BP=AB-AP=8t, ∵△PMN是等边三角形, ∴∠MPB=90°, ∵tan∠PBM=, ∴PM=(8-t)×=8-t. 如图1,过P分别作PQ⊥y轴于Q,PS⊥x轴于S, 可求得AQ=AP=t,PS=QO=4-t, ∴PM=(4-)÷=8-t, 当点M与点O重合时, ∵∠BAO=60°, ∴AO=2AP. ∴4=2t, ∴t=2. (3)①当0≤t≤1时,见图2. 设PN交EC于点G,重叠部分为直角梯形EONG,作GH⊥OB于H. ∵∠GNH=60°,, ∴HN=2, ∵PM=8-t, ∴BM=16-2t, ∵OB=12, ∴ON=(8-t)-(16-2t-12)=4+t, ∴OH=ON-HN=4+t-2=2+t=EG, ∴S=(2+t+4+t)×2=2t+6. ∵S随t的增大而增大, ∴当t=1时,Smax=8. ②当1<t<2时,见图3. 设PM交EC于点I,交EO于点F,PN交EC于点G,重叠部分为五边形OFIGN. 作GH⊥OB于H, ∵FO=4-2t, ∴EF=2-(4-2t)=2t-2, ∴EI=2t-2. ∴S=S梯形ONGE-S△FEI=2t+6-(2t-2)(2t-2)=-2t2+6t+4 由题意可得MO=4-2t,OF=(4-2t)×,PC=4-t,PI=4-t, 再计算S△FMO=(4-2t)2× S△PMN=(8-t)2,S△PIG=(4-t)2, ∴S=S△PMN-S△PIG-S△FMO=(8-t)2-(4-t)2-(4-2t)2× =-2t2+6t+4 ∵-2<0, ∴当时,S有最大值,Smax=. ③当t=2时,MP=MN=6,即N与D重合, 设PM交EC于点I,PD交EC于点G,重叠部 分为等腰梯形IMNG,见图4.S=×62-×22=8, 综上所述:当0≤t≤1时,S=2t+6; 当1<t<2时,S=-2t2+6t+4; 当t=2时,S=8. ∵, ∴S的最大值是.
复制答案
考点分析:
相关试题推荐
已知抛物线y=x2+bx+c,经过点A(0,5)和点B(3,2)
(1)求抛物线的解析式:
(2)现有一半径为l,圆心P在抛物线上运动的动圆,问⊙P在运动过程中,是否存在⊙P与坐标轴相切的情况?若存在,请求出圆心P的坐标;若不存在,请说明理由;
(3)若⊙Q的半径为r,点Q在抛物线上,且⊙Q与两坐轴都相切时,求半径r的值.
查看答案
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.

manfen5.com 满分网 查看答案
2008年5月12日,我国四川汶川发生了8.0级的特大地震,给汶川人民的生命财产带来巨大损失.地震发生后,我市人民积极响应党中央号召支援灾区,迅速募捐了大量的药品、食品、帐篷等救灾物资,计划首批用某运输公司的20辆汽车运送200吨上述三种物资到地震灾区,每辆车只能装运同一种物资且必须装满.根据下表提供的信息,解答下列问题.
物资名称药品食品帐篷
每辆车运载量(吨)81012
每吨货物运输所用费用(百元)876
(1)若装运药品的车辆数为x,装运食品的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种物资的车辆数都多于4辆,那么车辆安排方案有几种写出每种安排安案;
(3)若要使此次运输费W(百元)最小,应采用哪种方案,并求出最少运费.
查看答案
manfen5.com 满分网如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.
(1)求证:△ABC≌△ADC;
(2)对角线AC与BD有什么关系?
查看答案
(1)解不等式组:manfen5.com 满分网,并把解集在数轴上表示出来.
(2)A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:
manfen5.com 满分网
①请将表一和图一中的空缺部分补充完整;
②竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数;
③若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.