满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与...

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
manfen5.com 满分网
(1)根据A(3,0),B(4,1)两点利用待定系数法求二次函数解析式; (2)从当△PAB是以A为直角顶点的直角三角形,且∠PAB=90°与当△PAB是以B为直角顶点的直角三角形,且∠PBA=90°,分别求出符合要求的答案; (3)根据当OE∥AB时,△FEO面积最小,得出OM=ME,求出即可. 【解析】 (1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点, ∴, 解得:, ∴y=x2-x+3; ∴点C的坐标为:(0,3); (2)假设存在,分两种情况: ①当△PAB是以A为直角顶点的直角三角形,且∠PAB=90°, 如图1,过点B作BM⊥x轴于点M,设D为y轴上的点, ∵A(3,0),B(4,1), ∴AM=BM=1, ∴∠BAM=45°, ∴∠DAO=45°, ∴AO=DO, ∵A点坐标为(3,0), ∴D点的坐标为:(0,3), ∴直线AD解析式为:y=kx+b,将A,D分别代入得: ∴0=3k+b,b=3, ∴k=-1, ∴y=-x+3, ∴y=x2-x+3=-x+3, ∴x2-3x=0, 解得:x=0或3, ∴y=3,y=0(不合题意舍去), ∴P点坐标为(0,3), ∴点P、C、D重合, ②当△PAB是以B为直角顶点的直角三角形,且∠PBA=90°, 如图2,过点B作BF⊥y轴于点F, 由(1)得,FB=4,∠FBA=45°, ∴∠DBF=45°, ∴DF=4, ∴D点坐标为:(0,5),B点坐标为:(4,1), ∴直线BD解析式为:y=kx+b,将B,D分别代入得: ∴1=4k+b,b=5, ∴k=-1, ∴y=-x+5, ∴y=x2-x+3=-x+5, ∴x2-3x-4=0, 解得:x1=-1,x2=4(舍), ∴y=6, ∴P点坐标为(-1,6), ∴点P的坐标为:(-1,6),(0,3); (3)如图3:作EM⊥AO于M, ∵直线AB的解析式为:y=x-3, ∴tan∠OAC=1, ∴∠OAC=45°, ∴∠OAC=∠OAF=45°, ∴AC⊥AF, ∵S△FEO=OE×OF, OE最小时S△FEO最小, ∵OE⊥AC时OE最小, ∵AC⊥AF ∴OE∥AF ∴∠EOM=45°, ∴MO=EM, ∵E在直线CA上, ∴E点坐标为(x,-x+3), ∴x=-x+3, 解得:x=, ∴E点坐标为(,).
复制答案
考点分析:
相关试题推荐
情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是______,∠CAC′=______°.manfen5.com 满分网
manfen5.com 满分网
问题探究manfen5.com 满分网
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
查看答案
小王从A地前往B地,到达后立刻返回.他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示.
(1)小王从B地返回到A地用了多少小时?
(2)求小王出发6小时后距A地多远?
(3)在A、B之间有一C地,小王从去吋途经C地,到返回时路过C地,共用了2小时20分,求A、C 两地相距多远?

manfen5.com 满分网 查看答案
已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.
(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧manfen5.com 满分网的长;
(2)⊙P移动到与边OB相交于点E,F,若EF=4manfen5.com 满分网cm,求OC的长.

manfen5.com 满分网 查看答案
如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:manfen5.com 满分网≈1.73)

manfen5.com 满分网 查看答案
为了了解我县初中学生体育活动情况,随机调查了720名八年级学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;
(3)2012年我县八年级学生约为1.2万人,按此调查,可以估计2012年我县八年级学生中每天锻炼未超过1小时的学生约有多少万人?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.