满分5 > 初中数学试题 >

如图,一次函数y=ax+b的图象与x轴,y轴交于A,B两点,与反比例函数的图象相...

如图,一次函数y=ax+b的图象与x轴,y轴交于A,B两点,与反比例函数manfen5.com 满分网的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.
其中正确的结论是    .(把你认为正确结论的序号都填上).
manfen5.com 满分网
此题要根据反比例函数的性质进行求解,解决此题的关键是要证出CD∥EF,可从①问的面积相等入手;△DFE中,以DF为底,OF为高,可得S△DFE=|xD|•|yD|=k,同理可求得△CEF的面积也是k,因此两者的面积相等;若两个三角形都以EF为底,那么它们的高相同,即E、F到AD的距离相等,由此可证得CD∥EF,然后根据这个条件来逐一判断各选项的正误. 【解析】 设点D的坐标为(x,),则F(x,0). 由函数的图象可知:x>0,k>0. ∴S△DFE=DF•OF=|xD|•||=k, 同理可得S△CEF=k, 故S△DEF=S△CEF. 若两个三角形以EF为底,则EF边上的高相等,故CD∥EF. ①由上面的解题过程可知:①正确; ②∵CD∥EF,即AB∥EF,∴△AOB∽△FOE,故②正确; ③条件不足,无法得到判定两三角形全等的条件,故③错误; ④法一:∵CD∥EF,DF∥BE, ∴四边形DBEF是平行四边形, ∴S△DEF=S△BED, 同理可得S△ACF=S△ECF; 由①得:S△DBE=S△ACF. 又∵CD∥EF,BD、AC边上的高相等, ∴BD=AC,④正确; 法2:∵四边形ACEF,四边形BDEF都是平行四边形, 而且EF是公共边, 即AC=EF=BD, ∴BD=AC,④正确; 因此正确的结论有3个:①②④.
复制答案
考点分析:
相关试题推荐
如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是   
manfen5.com 满分网 查看答案
已知一元二次方程x2+px+3=0的一个根为-3,则另一个根为    查看答案
因式分【解析】
2x2-18=    查看答案
如图,直线y=manfen5.com 满分网x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=manfen5.com 满分网x+3上,若N点在第二象限内,则tan∠AON的值为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是( )
manfen5.com 满分网
A.4-manfen5.com 满分网
B.4-manfen5.com 满分网
C.8-manfen5.com 满分网
D.8-manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.