如图,抛物线y=ax
2+bx+c经过点O(0,0),A(4,0),B(5,5).点C是y轴负半轴上一点,直线l经过B,C两点,且tan∠OCB=
.
(1)求抛物线的解析式;
(2)求直线l的解析式;
(3)过O,B两点作直线,如果P是直线OB上的一个动点,过点P作直线PQ平行于y轴,交抛物线于点Q.问:是否存在点P,使得以P,Q,B为顶点的三角形与△OBC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.
考点分析:
相关试题推荐
如图,一次函数
的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边△ABC,
(1)求△ABC的面积;
(2)如果在第二象限内有一点P(a,
);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;
(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
查看答案
如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连接AD并延长,与BC相交于点E.
(1)若BC=
,CD=1,求⊙O的半径;
(2)取BE的中点F,连接DF,求证:DF是⊙O的切线.
查看答案
某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
| 1号 | 2号 | 3号 | 4号 | 5号 | 总数 |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
经统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,来确定冠军奖.请你回答下列问题:
(1)计算两班的优秀率;
(2)写出两班比赛数据的中位数;并估算两个班的方差哪个大,直接写出结果;
(3)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
查看答案
西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务.问原计划每天铺多少千米,计划多少天完成?
查看答案