如图①、②是小明在一次课外活动中剪的两块直角三角形硬纸板.图①中,∠C=90°,∠A=45°,AC=4cm;图②中,∠F=90°,∠D=30°,EF=6cm.操作:小明将两块三角形硬纸板如图③所示放置,将△ABC的直角边CB与△DEF的斜边DE重合,点B与点E重合,使△ABC沿ED方向向下滑动,当点C与点D重合时停止运动.
解决问题:
(1)在△ABC沿ED方向滑动的过程中,A、E两点间的距离逐渐______.(填“不变”、“变大”或“变小”).
(2)假如△ABC沿ED方向以每秒1cm的速度向下滑,小明经过进一步地探究,设想了如下几个问题:
问题①:当△ABC向下滑动多少秒,A、E的连线与DF平行?
问题②:在△ABC向下滑动多少秒,以线段DC、AE、EF的长度为三边长的三角形恰好构成直角三角形?
问题③:在△ABC向下滑动的过程中,是否存在某个位置,使得∠AEC=15°?如果存在,求出下滑时间;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.
查看答案
某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:
(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?
(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?
查看答案