如图,已知一次函数y=kx+b的图象与反比例函数
的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是-2,求:
(1)一次函数的解析式;
(2)△AOB的面积;
(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.
考点分析:
相关试题推荐
图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
查看答案
如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连接AC.
(1)求证:△ABC∽△POA;
(2)若OB=2,OP=
,求BC的长.
查看答案
某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.
(1)第四个月销量占总销量的百分比是______;
(2)在图2中补全表示B品牌电视机月销量的折线;
(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;
(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.
查看答案
周末,身高都为1.6米的蚌蚌、艳艳来到张公山公园,准备用他们所学的知识测算望淮塔的高度.如图,蚌蚌站在A处测得他看塔顶的仰角α为45°,艳艳站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角β为30°.他们又测出A、B两点的距离为30米.假设他们的眼睛离头顶都为10cm,求望淮塔的高度(结果精确到0.01,参考数据:
,
)
查看答案