满分5 > 初中数学试题 >

如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB...

如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.
(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.

manfen5.com 满分网
(1)根据题意,作出图示;分析可得:AM=8,且△ADE∽△ABC,进而可得,解可得答案. (2)分两种情况:①当正方形DEFG在△ABC的内部时,②当正方形DEFG的一部分在△ABC的外部时,依据平行线以及正方形的性质,可得二次函数,再根据二次函数的性质,解可得重合部分的面积,比较可得面积的最大值. 【解析】 (1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M. ∵S△ABC=48,BC=12,∴AM=8, ∵DE∥BC,△ADE∽△ABC, ∴, 而AN=AM-MN=AM-DE,∴, 解之得DE=4.8.∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8, (2)分两种情况: ①当正方形DEFG在△ABC的内部时, 如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积, ∵DE=x,∴y=x2, 此时x的范围是0<x≤4.8, ②当正方形DEFG的一部分在△ABC的外部时, 如图(3),设DG与BC交于点Q,EF与BC交于点P, △ABC的高AM交DE于N, ∵DE=x,DE∥BC,∴△ADE∽△ABC, 即,而AN=AM-MN=AM-EP, ∴,解得EP=8-x. 所以y=x(8-x),即y=-x2+8x, 由题意,x>4.8,且x<12,所以4.8<x<12; 因此△ABC与正方形DEFG重叠部分的面积需分两种情况讨论, 当0<x≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04, 当4.8<x<12时,因为, 所以当时, △ABC与正方形DEFG重叠部分的面积的最大值为二次函数的最大值:y最大=-×62+8×6=24; 因为24>23.04, 所以△ABC与正方形DEFG重叠部分的面积的最大值为24.
复制答案
考点分析:
相关试题推荐
“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
查看答案
如图,已知一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是-2,求:
(1)一次函数的解析式;
(2)△AOB的面积;
(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.

manfen5.com 满分网 查看答案
图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连接AC.
(1)求证:△ABC∽△POA;
(2)若OB=2,OP=manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.
(1)第四个月销量占总销量的百分比是______
(2)在图2中补全表示B品牌电视机月销量的折线;
(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;
(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.