如图分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b),则ab=1.根据两角对应相等的两三角形相似,得出△OAC∽△BOD,由相似三角形的对应边成比例,则BD、OD都可用含a、b的代数式表示,从而求出BD•OD的积,进而得出结果.
【解析】
分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b).
∵点A在反比例函数y=(x>0)的图象上,∴ab=1.
在△OAC与△BOD中,∠AOC=90°-∠BOD=∠OBD,∠OCA=∠BDO=90°,
∴△OAC∽△BOD,
∴OC:BD=AC:OD=OA:OB,
在Rt△AOB中,∠AOB=90°,∠B=30°,∴OA:OB=1:,
∴b:BD=a:OD=1:,
∴BD=b,OD=a,
∴BD•OD=3ab=3,
又∵点B在第四象限,
∴点B在函数的图象上运动.