满分5 > 初中数学试题 >

已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC...

已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).
manfen5.com 满分网
(1)可通过全等三角形来得出简单的线段相等,证明AN=BM,只要求出三角形ACN和MCB全等即可,这两个三角形中,已知的条件有AC=MC,NC=CB,只要证明这两组对应边的夹角相等即可,我们发现∠ACN和∠MCB都是等边三角形的外角,因此它们都是120°,这样就能得出两三角形全等了.也就证出了AN=BM. (2)我们不难发现∠ECF=180-60-60=60°,因此只要我们再证得两条边相等即可得出三角形ECF是等边三角形,可从EC,CF入手,由(1)的全等三角形我们知道,∠MAC=∠BMC, 又知道了AC=MC,∠MCF=∠ACE=60°,那么此时三角形AEC≌三角形MCF,可得出CF=CE,于是我们再根据∠ECF=60°,便可得出三角形ECF是等边三角形的结论. (3)判定结论1是否正确,也是通过证明三角形ACN和BCM来求得.这两个三角形中MC=AC,NC=BC,∠MCB和∠ACN都是60°+∠ACB,因此两三角形就全等,AN=BM,结论1正确. 根据图1,当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形. (1)证明:∵△ACM,△CBN是等边三角形, ∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°, ∴∠ACM+∠MCN=∠NCB+∠MCN, 即:∠ACN=∠MCB, 在△ACN和△MCB中, AC=MC,∠ACN=∠MCB,NC=BC, ∴△ACN≌△MCB(SAS). ∴AN=BM. (2)证明:∵△ACN≌△MCB, ∴∠CAN=∠CMB. 又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°, ∴∠MCF=∠ACE. 在△CAE和△CMF中 ∠CAE=∠CMF,CA=CM,∠ACE=∠MCF, ∴△CAE≌△CMF(ASA). ∴CE=CF. ∴△CEF为等腰三角形. 又∵∠ECF=60°, ∴△CEF为等边三角形. (3)【解析】 如右图, ∵△CMA和△NCB都为等边三角形, ∴MC=CA,CN=CB,∠MCA=∠BCN=60°, ∴∠MCA+∠ACB=∠BCN+∠ACB,即∠MCB=∠ACN, ∴△CMB≌△CAN, ∴AN=MB, 结论1成立,结论2不成立.
复制答案
考点分析:
相关试题推荐
某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.
manfen5.com 满分网
请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?
查看答案
先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
已知A(1,5),B(3,-1)两点,在x轴上取一点M,使AM-BN取得最大值时,则M的坐标为    查看答案
如图,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为    米(结果保留根号)
manfen5.com 满分网 查看答案
如图,直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式组manfen5.com 满分网x<kx+b<0的解集为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.