满分5 > 初中数学试题 >

已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的...

已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离为   
根据题意画出图形,由于AB、CD的位置不能确定,故应分AB与CD在圆心O的同侧及AB与CD在圆心O的异侧两种情况讨论,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE-OF即可求出答案; 如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE+OF即可求出答案. 【解析】 如图所示, 如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F, ∵AB∥CD, ∴OE⊥AB, ∵AB=8cm,CD=6cm, ∴AF=4cm,CE=3cm, ∴OA=OC=5cm, ∴OE===4cm, 同理,OF===3cm, ∴EF=OE-OF=4-3=1cm; 如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,反向延长OE交AB于F, ∵AB∥CD, ∴OE⊥AB, ∵AB=8cm,CD=6cm, ∴AF=4cm,CE=3cm, ∴OA=OC=5cm, ∴OE===4cm, 同理,OF===3cm, ∴EF=OE+OF=4+3=7cm. 故答案为:1cm或7cm.
复制答案
考点分析:
相关试题推荐
抛物线y=x2-2x-8的对称轴为直线    查看答案
二次函数y=x2+a的图象过点(1,4),则a=    查看答案
已知某种水果的批发单价与批发量的函数关系如图1所示.
(1)请说明图中①、②两段函数图象的实际意义;
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.manfen5.com 满分网
查看答案
如图1,正方形ABCD和正方形QMNP,∠M=∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
(1)求证:ME=MF.
(2)如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
(3)如图3,若将原题中的“正方形”改为“矩形”,且AB=mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理
(4)根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.
manfen5.com 满分网
查看答案
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.