满分5 > 初中数学试题 >

如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,ta...

如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

manfen5.com 满分网
(1)此题要证明DC=BC不能用全等三角形的性质,利用tan∠ADC=2求出BC然后再判定相等; (2)容易证明△DEC≌△BFC,得CE=CF,∠ECD=∠FCB,这样容易证明△ECF是等腰直角三角形; (3)由∠BEC=135°得∠BEF=90°,这样求sin∠BFE,然后利用已知条件就可以求出它的值了. (1)证明:过A作DC的垂线AM交DC于M,则AM=BC=2. 又tan∠ADC=2, ∴DM==1, 即DC=BC; (2)【解析】 等腰直角三角形. 证明:因为DE=BF,∠EDC=∠FBC,DC=BC, ∴△DEC≌△BFC, ∴CE=CF,∠ECD=∠FCB, ∴∠ECF=∠FCB+∠BCE=∠ECD+∠BCE=∠BCD=90°, 即△ECF是等腰直角三角形; (3)【解析】 设BE=k,则CE=CF=2k, ∴EF=2k, ∵∠BEC=135°,又∠CEF=45°, ∴∠BEF=90°, 所以BF==3k, 所以sin∠BFE==.
复制答案
考点分析:
相关试题推荐
若反比例函数manfen5.com 满分网过面积为9的正方形AMON的顶点A,且过点A的直线y2=mx-n的图象与反比例函数的另一交点为B(-1,a)
(1)求出反比例函数与一次函数的解析式;
(2)求△AOB的面积.

manfen5.com 满分网 查看答案
某班有50名同学,男、女生人数各占一半,在本周操行评定中操行得分情况如图(1)统计表中所示,图(2)是该班本周男生操行得分的条形统计图:
操行分得分1分2分3分4分5分
人数2410304
图(1)
(1)补全统计表和条形统形图;
(2)计算全班同学的操行平均得分;
(3)若要在操行得分为5分的4名同学中选出两名同学作“本周明星”,用画树状图或列表的方法求出选为“本周明星”的正好是一名男同学和一名女同学的概率.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中a是方程manfen5.com 满分网的解.
查看答案
如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.

manfen5.com 满分网 查看答案
解不等式组manfen5.com 满分网,并写出它的所有整数解.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.