-|-3|=( )
A.-3
B.-
C.
D.3
考点分析:
相关试题推荐
如图,面积为39的直角梯形OABC的直角顶点C在x轴上,点C坐标为(
,0),AB=
,点D是AB边上的一点,且AD:BD=2:3.有一45°的角的顶点E在x轴上运动,角的一边过点D,角的另一边与直线
OA交于点F(点D、E、F按顺时针排列),连接DF.设CE=x,OF=y.
(1)求点D的坐标及∠AOC的度数;
(2)若点E在x轴正半轴上运动,求y与x的函数关系式;
(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.
查看答案
张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图1.然后,他用这8块瓷砖又拼出一个正方形,如图2,中间恰好空出一个边长为1的小正方形(阴影部分),假设长方形的长y,宽为x,且y>x.
(1)请你求出图1中y与x的函数关系式;
(2)求出图2中y与x的函数关系式;
(3)在图3中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义;
(4)根据以上讨论完成下表,观察x与y的关系,回答:如果给你任意8个相同的长方形,你能否拼成类似图1和图2的图形?说出你的理由.
图(2)中小正方形边长 | 1 | 2 | 3 | 4 | … |
x | 3 | 6 | 9 | 12 | … |
y | 5 | 10 | 15 | 20 | … |
查看答案
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CAB=2∠CBF.
(1)试判断直线BF与⊙O的位置关系,并说明理由;
(2)若AB=6,BF=8,求tan∠CBF.
查看答案
超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO=45°.
(1)求A、B之间的路程;
(2)请判断此车是否超过了万丰路每小时70千米的限制速度?(参考数据:
,
).
查看答案
小明到某品牌服装专卖店做社会调查.了解到该专卖店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,而“计件奖金=销售每件的奖金×月销售件数”,并获得如下信息:
营业员 | 甲 | 乙 |
月销售件数(件) | 200 | 150 |
月总收入(元) | 1400 | 1250 |
(1)列方程(组),求营业员的月基本工资和销售每件的奖金;
(2)营业员丙月总收入不低于1800元,这位营业员当月至少要卖服装多少件?
查看答案