过A点作AC⊥x轴于点C,易得△OAC∽△ONM,则OC:OM=AC:NM=OA:ON,而OA=2AN,即OA:ON=2:3,设A点坐标为(a,b),得到N点坐标为(a,b),由点A与点B都在y=图象上,
根据反比例函数的坐标特点得B点坐标为(a,b),由OA=2AN,△OAB的面积为5,△NAB的面积为,则△ONB的面积=5+=,根据三角形面积公式得NB•OM=,即×(b-b)×a=,化简得ab=12,即可得到k的值.
【解析】
过A点作AC⊥x轴于点C,如图,
则AC∥NM,
∴△OAC∽△ONM,
∴OC:OM=AC:NM=OA:ON,
而OA=2AN,即OA:ON=2:3,设A点坐标为(a,b),则OC=a,AC=b,
∴OM=a,NM=b,
∴N点坐标为(a,b),
∴点B的横坐标为a,设B点的纵坐标为y,
∵点A与点B都在y=图象上,
∴k=ab=a•y,
∴y=b,即B点坐标为(a,b),
∵OA=2AN,△OAB的面积为5,
∴△NAB的面积为,
∴△ONB的面积=5+=,
∴NB•OM=,即×(b-b)×a=,
∴ab=12,
∴k=12.
故答案为12.