满分5 > 初中数学试题 >

如图,已知正比例函数和反比例函数的图象都经过点A(3,3). (1)求正比例函数...

如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=manfen5.com 满分网S?若存在,求点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)设出正比例函数和反比例函数的解析式,用待定系数发解答; (2)因为B点为三个函数的交点,将B(6,m)代入已知函数y=,即可求得m的值;根据一次函数和正比例函数平行,可知二者比例系数相同,再用待定系数法求出b的值; (3)A、B坐标已求出,D点坐标可根据一次函数解析式求得; (4)画出图形,根据已知各点坐标,求出相应线段长.由于四边形不规则,故将其面积转化为矩形面积与三角形面积的差或几个三角形面积的和. 【解析】 (1)设正比例函数的解析式为y=k1x(k1≠0), 因为y=k1x的图象过点A(3,3), 所以3=3k1,解得k1=1. 这个正比例函数的解析式为y=x. 设反比例函数的解析式为y=(k2≠0), 因为y=的图象过点A(3,3), 所以3=, 解得k2=9. 这个反比例函数的解析式为y=.(2分) (2)因为点B(6,m)在y=的图象上, 所以m==, 则点B(6,).(3分) 设一次函数解析式为y=k3x+b(k3≠0), 因为y=k3x+b的图象是由y=x平移得到的, 所以k3=1,即y=x+b. 又因为y=x+b的图象过点B(6,), 所以=6+b, 解得b=-, ∴一次函数的解析式为y=x-. (3)因为y=x-的图象交y轴于点D, 所以D的坐标为(0,-). 设二次函数的解析式为y=ax2+bx+c(a≠0). 因为y=ax2+bx+c的图象过点A(3,3)、B(6,)、和D(0,-), 所以, 解得, 这个二次函数的解析式为y=-x2+4x-.(6分) (4)∵交x轴于点C, ∴点C的坐标是(,0), 如图所示,连接OE,CE,过点A作AF∥x轴,交y轴于点F,过点B作BH∥y轴,交AF于点H,过点D作DG∥x轴,交直线BH于点G,则S=×6-×6×6-××3-×3×3=45-18--=. 假设存在点E(x,y),使S1=S=. ∵四边形CDOE的顶点E只能在x轴上方, ∴y>0, ∴S1=S△OCD+S△OCE==. ∴, ∴.(7分) ∵E(x,y)在二次函数的图象上, ∴. 解得x=2或x=6. 当x=6时,点E(6,)与点B重合,这时CDOE不是四边形,故x=6舍去, ∴点E的坐标为(2,).(8分)
复制答案
考点分析:
相关试题推荐
已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.
(1)如图1,连接线段BE、CD.求证:BE=CD;
(2)如图2,连接DE交AB于点F.求证:F为DE中点.
manfen5.com 满分网
查看答案
某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.
manfen5.com 满分网
请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)若B馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.
查看答案
一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
查看答案
先化简,再求值:manfen5.com 满分网,其中a满足方程a2+4a+1=0.
查看答案
如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=manfen5.com 满分网,BE=2manfen5.com 满分网.求CD的长和四边形ABCD的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.