满分5 > 初中数学试题 >

如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°...

如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.
(1)求证:四边形EFCD是平行四边形;
(2)若BF=EF,求证:AE=AD.

manfen5.com 满分网
(1)由△ABC是等边三角形得到∠B=60°,而∠EFB=60°,由此可以证明EF∥DC,而DC=EF,然后即可证明四边形EFCD是平行四边形; (2)如图,连接BE,由BF=EF,∠EFB=60°可以推出△EFB是等边三角形,然后得到EB=EF,∠EBF=60°,而DC=EF,由此得到EB=DC,又 △ABC是等边三角形,所以得到∠ACB=60°,AB=AC,然后即可证明△AEB≌△ADC,利用全等三角形的性质就证明AE=AD. 证明:(1)∵△ABC是等边三角形, ∴∠ABC=60°, ∵∠EFB=60°, ∴∠ABC=∠EFB, ∴EF∥DC(内错角相等,两直线平行), ∵DC=EF, ∴四边形EFCD是平行四边形; (2)连接BE ∵BF=EF,∠EFB=60°, ∴△EFB是等边三角形, ∴EB=EF,∠EBF=60° ∵DC=EF, ∴EB=DC, ∵△ABC是等边三角形, ∴∠ACB=60°,AB=AC, ∴∠EBF=∠ACB, ∴△AEB≌△ADC, ∴AE=AD.
复制答案
考点分析:
相关试题推荐
已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.
(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.
查看答案
在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.
查看答案
manfen5.com 满分网李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:
(1)此次调查的总体是什么?
(2)补全频数分布直方图;
(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?
查看答案
如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=manfen5.com 满分网的图象交于A(1,4)、B(3,m)两点.
(1)求一次函数的解析式;
(2)求△AOB的面积.

manfen5.com 满分网 查看答案
如图,Rt△ABC的斜边AB=5,cosA=manfen5.com 满分网
(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);
(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.