满分5 > 初中数学试题 >

如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例...

如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数manfen5.com 满分网的图象在第一象限内的交点为M,若△OBM的面积为2.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)根据一次函数y=k1x+b的图象经过A(0,-2),B(1,0)可得到关于b、k1的方程组,进而可得到一次函数的解析式,设M(m,n)作MD⊥x轴于点D,由△OBM的面积为2可求出n的值,将M(m,4)代入y=2x-2求出m的值,由M(3,4)在双曲线上即可求出k2的值,进而求出其反比例函数的解析式; (2)过点M(3,4)作MP⊥AM交x轴于点P,由MD⊥BP可求出∠PMD=∠MBD=∠ABO,再由锐角三角函数的定义可得出OP的值,进而可得出结论. 【解析】 (1)∵直线y=k1x+b过A(0,-2),B(1,0)两点 ∴, ∴ ∴一次函数的表达式为y=2x-2.(3分) ∴设M(m,n),作MD⊥x轴于点D ∵S△OBM=2, ∴, ∴ ∴n=4(5分) ∴将M(m,4)代入y=2x-2得4=2m-2, ∴m=3 ∵M(3,4)在双曲线上, ∴, ∴k2=12 ∴反比例函数的表达式为 (2)过点M(3,4)作MP⊥AM交x轴于点P, ∵MD⊥BP, ∴∠PMD=∠MBD=∠ABO ∴tan∠PMD=tan∠MBD=tan∠ABO==2(8分) ∴在Rt△PDM中,, ∴PD=2MD=8, ∴OP=OD+PD=11 ∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)(10分)
复制答案
考点分析:
相关试题推荐
有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-1,-2和2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=x-3上的概率.
查看答案
随着“微博潮”的流行,初中学生也开始忙着“织围脖”,某校在上微博的280名学生中随机抽取了部分学生调查他们平常每天上微博的时间,绘制了扇形统计图和频数分布直方图,请根据图中信息,回答下列问题:
(1)本次调查共抽取了______名学生;将频数分布直方图补充完整;
(2)样本中,平均每天上微博的时间为0.5小时这一组的频率是______
(3)请估计该校上微博的学生中,大约有______名学生平均每天上微博的时间不少于1小时.
manfen5.com 满分网
查看答案
已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.
(1)观察图形并找出一对全等三角形:△______≌△______,请加以证明;
(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?
manfen5.com 满分网
查看答案
(1)计算:manfen5.com 满分网
(2)先化简manfen5.com 满分网,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
查看答案
manfen5.com 满分网如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.