满分5 > 初中数学试题 >

如图,抛物线y=x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,...

如图,抛物线y=manfen5.com 满分网x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

manfen5.com 满分网
(1)把A点的坐标代入抛物线解析式,求b的值,即可得出抛物线的解析式,根据顶点坐标公式,即可求出顶点坐标; (2)根据直角三角形的性质,推出AC2=OA2+OC2=5,BC2=OC2+OB2=20,即AC2+BC2=25=AB2,即可确定△ABC是直角三角形; (3)作出点C关于x轴的对称点C′,则C′(0,2),OC'=2.连接C'D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.首先确定最小值,然后根据三角形相似的有关性质定理,求m的值 【解析】 (1)∵点A(-1,0)在抛物线y=x2+bx-2上, ∴×(-1 )2+b×(-1)-2=0,解得b= ∴抛物线的解析式为y=x2-x-2. y=x2-x-2 =( x2-3x-4 ) =(x-)2-, ∴顶点D的坐标为 (,-). (2)当x=0时y=-2,∴C(0,-2),OC=2. 当y=0时,x2-x-2=0,∴x1=-1,x2=4,∴B (4,0) ∴OA=1,OB=4,AB=5. ∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20, ∴AC2+BC2=AB2.∴△ABC是直角三角形. (3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2, 连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小. 解法一:设抛物线的对称轴交x轴于点E. ∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DEM. ∴ ∴, ∴m=. 解法二:设直线C′D的解析式为y=kx+n, 则, 解得:. ∴. ∴当y=0时,,. ∴.
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

manfen5.com 满分网 查看答案
南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y(元)与铺设面积x(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y(元)与铺设面积x(m2)满足函数关系式:y=kx.
(1)根据图写出甲工程队铺设广场砖的造价y(元)与铺设面积x(m2)的函数关系式;
(2)如果狮山公园铺设广场砖的面积为1600m2,那么公园应选择哪个工程队施工更合算?

manfen5.com 满分网 查看答案
如图,在A岛周围25海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续前行20海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
我市某中学为了解九年级300名学生的理化实验操作水平,从中随机抽取30名学生进行测试.下表是这30名学生的测试成绩(分):
4576379457
7375687568
67410567394
(1)请你设计一张统计表,能够清楚反映出各成绩的人数分布情况;
(2)求出这30名学生成绩的平均数、众数;
(3)如果测试成绩6分以上(包括6分)为合格,请估计300名学生中成绩合格的约有多少人?
查看答案
如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.
求证:(1)△AEF≌△BCD;(2)EF∥CD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.