满分5 > 初中数学试题 >

如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切...

如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.
(1)∠BFG与∠BGF是否相等?为什么?
(2)求由DG、GE和弧ED所围成图形的面积.(阴影部分)

manfen5.com 满分网
(1)连接OD.根据切线的性质得到OD⊥AC,则OD∥BC;可得∠ODF=∠G,再结合对顶角相等和等边对等角得到∠BFG=∠BGF. (2)阴影部分的面积=直角三角形CDG的面积-(正方形的面积-扇形ODE的面积).根据等腰直角三角形的性质可求出有关边AB、OD的长,以及圆心角∠DOE的度数.进而可根据扇形的面积和直角三角形的面积求得阴影部分的面积. 【解析】 (1)∠BFG=∠BGF;理由如下: 连OD, ∵OD=OF(⊙O的半径), ∴∠ODF=∠OFD; ∵⊙O与AC相切于点D,∴OD⊥AC; 又∵∠C=90°,即GC⊥AC,∴OD∥GC, ∴∠BGF=∠ODF; 又∵∠BFG=∠OFD, ∴∠BFG=∠BGF. (2)连OE, ∵⊙O与AC相切于点D、与BC相切于点E, ∴DC=CE,OD⊥AC,OE⊥BC, ∵∠C=90°, ∴四边形ODCE为正方形, ∵AO=BO=AB==3, ∴OD=BC=×6=3, ∵∠BFG=∠BGF, ∴BG=BF=OB-OF=3-3; 从而CG=CB+BG=3+3; ∴S阴影=S△DCG-S正方形ODCE+S扇形ODE =S△DCG-(S正方形ODCE-S扇形ODE) =•3•(3+3)-(32-π•32) =.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD中,AD∥BC,AD=DC=BC,过AD的中点E作AC的垂线,交CB的延长线于F.
求证:
(1)四边形ABCD是菱形.
(2)BF=DE.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,直线y=-2x+2与x轴y轴分别相交于点A,B,四边形ABCD是正方形,曲线manfen5.com 满分网在第一象限经过点D.
(1)求正方形ABCD的面积;
(2)求双曲线的函数解析式.

manfen5.com 满分网 查看答案
manfen5.com 满分网某研究性学习小组为了了解本校初一学生一天中做家庭作业所用的大致时间(时间以整数记,单位:分钟),对本校的初一学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示),请结合统计图中提供的信息.
回答下列问题:
(1)这个研究性学习小组所抽取样本的容量是多少?
(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120分钟(不包括120分钟)的人数占被调查学生总人数的百分之几?
(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内?
查看答案
(1)解不等式:x>manfen5.com 满分网x-2,并将其解集表示在数轴上.
manfen5.com 满分网
(2)计算:manfen5.com 满分网-2sin45°-32
查看答案
定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为manfen5.com 满分网(其中k是使manfen5.com 满分网为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.