满分5 > 初中数学试题 >

如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B...

manfen5.com 满分网如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.
(1)求∠AEC的度数;
(2)求证:四边形OBEC是菱形.
(1)由直径AB的长,求出半径OA及OC的长,再由AC的长,得到三角形OAC三边相等,可得此三角形为等边三角形,根据等边三角形的性质得到∠AOC=60°,再根据同弧所对的圆心角等于所对圆周角的2倍,即可得出∠AEC的度数; (2)由直线l与圆O相切,根据切线的性质得到OC与直线l垂直,又BD与直线l垂直,根据在同一平面内,垂直于同一条直线的两直线平行得到BE与OC平行,根据两直线平行同位角相等,可得出∠B=∠AOC=60°,再由AB为圆O的直径,根据直径所对的圆周角为直角,可得出∠AED为直角,用∠AED-∠AEC求出∠DEC=60°,可得出一对同位角相等,根据同位角相等两直线平行,可得出EC与OB平行,根据两组对边平行的四边形为平行四边形可得出四边形OBEC为平行四边形,再由半径OC=OB,根据邻边相等的平行四边形为菱形可得出OBEC为菱形,得证. 【解析】 (1)∵OA=OC==2,AC=2, ∴OA=OC=AC, ∴△OAC为等边三角形,(1分) ∴∠AOC=60°,(2分) ∵圆周角∠AEC与圆心角∠AOC都对弧, ∴∠AEC=∠AOC=30°;(3分) (2)∵直线l切⊙O于C, ∴OC⊥CD,(4分) 又BD⊥CD, ∴OC∥BD,(5分) ∴∠B=∠AOC=60°, ∵AB为⊙O直径, ∴∠AEB=90°,又∠AEC=30°, ∴∠DEC=90°-∠AEC=60°, ∴∠B=∠DEC, ∴CE∥OB,(7分) ∴四边形OBEC为平行四边形,(8分) 又OB=OC, ∴四边形OBEC为菱形.(9分)
复制答案
考点分析:
相关试题推荐
某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图.
(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的______%.
(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?
(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表所示.若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?
出 口BC
人均购买饮料数量(瓶)32
manfen5.com 满分网
查看答案
如图,方格纸中的每个小正方形的边长均为1.
(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;
(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)
答:①中的图形______,②中的图形______
manfen5.com 满分网
查看答案
除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是否相等,并说明理由.
查看答案
计算:manfen5.com 满分网
查看答案
如图,已知A1,A2,A3,…,An是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1,A2,A3,…,An+1作x轴的垂线交一次函数manfen5.com 满分网x的图象于点B1,B2,B3,…,Bn+1,连接A1B2,B1A2,A2B3,B2A3,…,AnBn+1,BnAn+1依次产生交点P1,P2,P3,…,Pn,则Pn的横坐标是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.