满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx(a>0)与反比例函数的图象相交于点A,B.已知点A...

如图,抛物线y=ax2+bx(a>0)与反比例函数manfen5.com 满分网的图象相交于点A,B.已知点A的坐标为(1,4),点B(t,q)在第三象限内,且△AOB的面积为3(O为坐标原点).
(1)求反比例函数的解析式;
(2)用含t的代数式表示直线AB的解析式;
(3)求抛物线的解析式;
(4)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,把△AOB绕点O顺时针旋转90°,请在图②中画出旋转后的三角形,并直接写出所有满足△EOC∽△AOB的点E的坐标.
manfen5.com 满分网
(1)将点A(1,4)代入双曲线,求得k即可; (2)设点B(t,),t<0,AB所在直线的函数表达式为y=mx+n,将点A、B代入,列出方程组,从而得出直线AB的解析式; (3)可表示出直线AB与y轴的交点坐标,根据△AOB的面积为3,得2t2+3t-2=0,则求出点B的坐标,将点A,B代入抛物线y=ax2+bx,求出a、b即可; (4)画出图形,可得出点E的坐标有两个. 【解析】 (1)因为点A(1,4)在双曲线上, 所以k=4.故双曲线的函数表达式为.(1分) (2)设点B(t,),t<0,AB所在直线的函数表达式为y=mx+n, 则有, 解得,. 直线AB的解析式为y=-x+;(3分) (3)直线AB与y轴的交点坐标为, 故, 整理得2t2+3t-2=0, 解得t=-2,或t=(舍去). 所以点B的坐标为(-2,-2). 因为点A,B都在抛物线y=ax2+bx(a>0)上, 所以, 解得, 所以抛物线的解析式为y=x2+3x;(4分) (4)画出图形(2分) 点E的坐标是(8,-2)或(2,-8).(2分)
复制答案
考点分析:
相关试题推荐
阅读以下的材料:
如果两个正数a,b,即a>0,b>0,则有下面的不等式:manfen5.com 满分网当且仅当a=b时取到等号
我们把manfen5.com 满分网叫做正数a,b的算术平均数,把manfen5.com 满分网叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:
例:已知x>0,求函数manfen5.com 满分网的最小值.
【解析】
manfen5.com 满分网,则有manfen5.com 满分网,得manfen5.com 满分网,当且仅当manfen5.com 满分网时,即x=2时,函数有最小值,最小值为2.
根据上面回答下列问题
①已知x>0,则当x=______
查看答案
为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,
(1)求购进A,B两种纪念品每件需多少元?
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
查看答案
manfen5.com 满分网如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.
(1)求∠AEC的度数;
(2)求证:四边形OBEC是菱形.
查看答案
某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图.
(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的______%.
(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?
(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表所示.若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?
出 口BC
人均购买饮料数量(瓶)32
manfen5.com 满分网
查看答案
如图,方格纸中的每个小正方形的边长均为1.
(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;
(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)
答:①中的图形______,②中的图形______
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.