满分5 > 初中数学试题 >

如图,AB是⊙O的直径,AC是弦. (1)请你按下面步骤画图(画图或作辅助线时先...

如图,AB是⊙O的直径,AC是弦.
(1)请你按下面步骤画图(画图或作辅助线时先使用铅笔画出,确定后必须使用黑色字迹的签字笔描黑);
第一步,过点A作∠BAC的角平分线,交⊙O于点D;
第二步,过点D作AC的垂线,交AC的延长线于点E.
第三步,连接BD.
(2)求证:AD2=AE•AB;
(3)连接EO,交AD于点F,若5AC=3AB,求manfen5.com 满分网的值.

manfen5.com 满分网
(1)根据基本作图作出∠BAC的角平分线AD交⊙O于点D;点D作AC的垂线,垂足为点E; (2)根据直径所对的圆周角为直角得到∠ADB=90°,而DE⊥AC,则∠AED=90°,又由AD平分∠CAB得到∠CAD=∠DAB,根据相似三角形的判定得到Rt△ADE∽Rt△ABD,根据相似的性质得到AD:AB=AE:AD,利用比例的性质即可得到AD2=AE•AB; (3)连OD、BC,它们交于点G,由5AC=3AB,则不妨设AC=3x,AB=5x,根据直径所对的圆周角为直角得到∠ACB=90°,由∠CAD=∠DAB得到弧DC=弧DB,根据垂径定理的推论得到OD垂直平分BC,则有OD∥AE,OG=AC=x,并且得到四边形ECGD为矩形,则CE=DG=OD-OG=x-x=x,可计算出AE=AC+CE=3x+x=4x,利用AE∥OD可得到△AEF∽△DOF,则AE:OD=EF:OF,即EF:OF=4x:x=8:5, 然后根据比例的性质即可得到的值. (1)【解析】 如图; (2)证明:∵AB是⊙O的直径, ∴∠ADB=90°, 而DE⊥AC, ∴∠AED=90°, ∵AD平分∠CAB, ∴∠CAD=∠DAB, ∴Rt△ADE∽Rt△ABD, ∴AD:AB=AE:AD, ∴AD2=AE•AB; (3)【解析】 连OD、BC,它们交于点G,如图, ∵5AC=3AB,即AC:AB=3:5, ∴不妨设AC=3x,AB=5x, ∵AB是⊙O的直径, ∴∠ACB=90°, 又∵∠CAD=∠DAB, ∴弧DC=弧DB, ∴OD垂直平分BC, ∴OD∥AE, ∴OG=AC=x,∠AED=90°, ∴四边形ECGD为矩形, ∴CE=DG=OD-OG=x-x=x, ∴AE=AC+CE=3x+x=4x, ∵AE∥OD, ∴△AEF∽△DOF, ∴AE:OD=EF:OF, ∴EF:OF=4x:x=8:5, ∴==.
复制答案
考点分析:
相关试题推荐
(1)如图,△ABC三点的坐标分别为A(2,2),B(6,2),C(3,4),△ABC关于x轴作轴对称变换得到△DEF,则点A的对应点的坐标为______
(2)△ABC绕原点逆时针旋转90°得到△MNT,则点B的对应点的坐标为______
(3)画出△DEF与△MNT,则△DEF与△MNT关于直线______对称.

manfen5.com 满分网 查看答案
有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.
(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)
manfen5.com 满分网
查看答案
如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF(不再添加其它线段,不再标注或使用其他字母),并给出证明.
(1)你添加的条件是:______
(2)证明:

manfen5.com 满分网 查看答案
在平面直角坐标系中,直线y=kx-4经过点P(2,-6),求关于x的不等式kx-4≥O的解集.
查看答案
解分式方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.