满分5 > 初中数学试题 >

如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F...

如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.
(1)求证:CF=BF;
(2)若AD=2,⊙O的半径为3,求BC的长.

manfen5.com 满分网
连接AC,根据已知条件利用等角对等边可以得到CF=BF;作CG⊥AD于点G,先利用HL判定Rt△BCE≌Rt△DCG,推出BE=DG,根据边之间的关系可求得BE的值,再根据相似三角形的判定得到△BCE∽△BAC,根据相似三角形的对应边成比例,可得到BC2=BE•AB,这样便求得BC的值,注意负值要舍去. (1)证明:连接AC,如图 ∵C是弧BD的中点 ∴∠BDC=∠DBC(1分) 又∵∠BDC=∠BAC 在△ABC中,∠ACB=90°,CE⊥AB ∴∠BCE=∠BAC ∠BCE=∠DBC(3分) ∴CF=BF;(4分) (2)【解析】 解法一:作CG⊥AD于点G, ∵C是弧BD的中点 ∴∠CAG=∠BAC, 即AC是∠BAD的角平分线.(5分) ∴CE=CG,AE=AG(6分) 在Rt△BCE与Rt△DCG中, CE=CG,CB=CD ∴Rt△BCE≌Rt△DCG(HL) ∴BE=DG(7分) ∴AE=AB-BE=AG=AD+DG 即6-BE=2+DG ∴2BE=4,即BE=2(8分) 又∵△BCE∽△BAC ∴BC2=BE•AB=12(9分) BC=±2(舍去负值) ∴BC=2.(10分) 解法二:∵AB是⊙O的直径,CE⊥AB ∴∠BEF=∠ADB=90°,(5分 在Rt△ADB与Rt△FEB中, ∵∠ABD=∠FBE ∴△ADB∽△FEB, 则,即, ∴BF=3EF(6分) 又∵BF=CF, ∴CF=3EF 利用勾股定理得: (7分) 又∵△EBC∽△ECA 则, 则CE2=AE•BE(8分) ∴(CF+EF)2=(6-BE)•BE 即(3EF+EF)2=(6-2EF)•2EF ∴EF=(9分) ∴BC=.(10分)
复制答案
考点分析:
相关试题推荐
为了迎接“五•一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.
(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?
(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价-进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么该专卖店要获得最大利润应如何进货?
查看答案
如图,已知函数manfen5.com 满分网的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.
(1)求一次函数的解析式;
(2)将一次函数y=kx+b的图象沿x轴负方向平移a(a>0)个单位长度得到新图象,求这个新图象与函数manfen5.com 满分网的图象只有一个交点M时a的值及交点M的坐标.

manfen5.com 满分网 查看答案
如图,一艘船以每小时60海里的速度自A向正北方向航行,船在A处时,灯塔S在船的北偏东30°,航行1小时后到B处,此时灯塔S在船的北偏东75°,(运算结果保留根号)
(1)求船在B处时与灯塔S的距离;
(2)若船从B处继续向正北方向航行,问经过多长时间船与灯塔S的距离最近.

manfen5.com 满分网 查看答案
甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球.
(1)求取出的3个小球的标号全是奇数的概率是多少?
(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.
查看答案
如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.