满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的...

manfen5.com 满分网如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.
(1)根据已知求出AB=10cm,进而得出△PBD∽△ABC,利用相似三角形的性质得出圆心P到直线AB的距离等于⊙P的半径,即可得出直线AB与⊙P相切; (2)根据BO=AB=5cm,得出⊙P与⊙O只能内切,进而求出⊙P与⊙O相切时,t的值. 【解析】 (1)直线AB与⊙P相切, 如图,过P作PD⊥AB,垂足为D, 在Rt△ABC中,∠ACB=90°, ∵AC=6cm,BC=8cm, ∴AB=10cm, ∵P为BC中点, ∴PB=4cm, ∵∠PDB=∠ACB=90°, ∠PBD=∠ABC, ∴△PBD∽△ABC, ∴, 即, ∴PD=2.4(cm), 当t=1.2时,PQ=2t=2.4(cm), ∴PD=PQ,即圆心P到直线AB的距离等于⊙P的半径, ∴直线AB与⊙P相切; (2)∵∠ACB=90°, ∴AB为△ABC的外接圆的直径, ∴BO=AB=5cm, 连接OP, ∵P为BC中点,PO为△ABC的中位线, ∴PO=AC=3cm, ∵点P在⊙O内部, ∴⊙P与⊙O只能内切, ∴当⊙P在⊙O内部时:5-2t=3, 当⊙O在⊙P内部时2t-5=3, ∴t=1或4, ∴⊙P与⊙O相切时,t的值为1或4.
复制答案
考点分析:
相关试题推荐
已知函数y=mx2-6x+1(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求m的值.
查看答案
先化简,后求值:(2x+3y)2-(2x+y)(2x-y),其中manfen5.com 满分网
查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数).
其中正确的结论有    (填序号)
manfen5.com 满分网 查看答案
如图,已知矩形OABC的面积为manfen5.com 满分网,它的对角线OB与双曲线manfen5.com 满分网相交于点D,且OB:OD=5:3,则k=   
manfen5.com 满分网 查看答案
如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.
如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.
若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.