满分5 > 初中数学试题 >

某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别...

某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.
七年级学生最喜欢的运动项目人数统计表:
项目排球篮球跳绳踢毽其它
人数(人)78 146
八年级学生最喜欢的运动项目人数统计图:
manfen5.com 满分网
请根据统计表(图)解答下列问题:
(1)本次调查抽取了多少名学生?
(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比;
(3)该校共有学生1800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽,那么学校在“大间操”时至少应提供多少个毽?
(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分数,又知九年级最喜欢排球的人数为10人,所以求出九年级最喜欢运动的人数,再由七、八、九年级的学生中,分别抽取相同数量的学生,得出本次调查共抽取的学生数; (2)先根据(1)得七年级最喜欢跳绳的人数,从而能求出八、九年级最喜欢跳绳的人数,然后求出最喜欢跳绳的学生数,最后求得“最喜欢跳绳”的学生占抽样总人数的百分比; (3)由图可直接求出八年级最喜欢踢毽的人数,然后求出三个年级最喜欢踢毽子的总人数占全校人数的百分比,再根据题意直接求出答案即可. 【解析】 (1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1-30%-16%-24%-10%=20%, 又知九年级最喜欢排球的人数为10人, ∴九年级最喜欢运动的人数有10÷20%=50(人), ∴本次调查抽取的学生数为:50×3=150(人). (2)根据(1)得七年级最喜欢跳绳的人数有50-7-8-6-14=15人, 那么八年级最喜欢跳绳的人数有15-5=10人, 最喜欢跳绳”的学生有15+10+50×16%=33人, ∴“最喜欢跳绳”的学生占抽样总人数的百分比为22%; (3)由图可知,八年级最喜欢踢毽的人数有:50-10-12-10-5=13人, ∴学校在“大间操”时至少应提供的毽子数为 (个). 项目 排球 篮球 跳绳 踢毽 其它 人数(人) 7 8  15 14 6
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.
查看答案
已知函数y=mx2-6x+1(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求m的值.
查看答案
先化简,后求值:(2x+3y)2-(2x+y)(2x-y),其中manfen5.com 满分网
查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数).
其中正确的结论有    (填序号)
manfen5.com 满分网 查看答案
如图,已知矩形OABC的面积为manfen5.com 满分网,它的对角线OB与双曲线manfen5.com 满分网相交于点D,且OB:OD=5:3,则k=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.