满分5 > 初中数学试题 >

如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC...

如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点;
(2)在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.

manfen5.com 满分网
(1)根据已知条件得出∠BEC=∠ACB,以及∠BCE=∠ABC,得出△BCE∽△ABC,即可得出结论; (2)①根据作一角等于已知角即可得出△ABC的自相似点; ②根据∠PBC=∠A,∠BCP=∠ABC=∠2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,即可得出各内角的度数. 【解析】 (1)在Rt△ABC中,∠ACB=90°,CD是AB上的中线, ∴CD=AB, ∴CD=BD, ∴∠BCE=∠ABC, ∵BE⊥CD,∴∠BEC=90°, ∴∠BEC=∠ACB, ∴△BCE∽△ABC, ∴E是△ABC的自相似点; (2)①如图所示, 作法:①在∠ABC内,作∠CBD=∠A, ②在∠ACB内,作∠BCE=∠ABC,BD交CE于点P, 则P为△ABC的自相似点; ②∵P是△ABC的内心,∴∠PBC=∠ABC,∠PCB=∠ACB, ∵△ABC的内心P是该三角形的自相似点, ∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A, ∴∠A+2∠A+4∠A=180°, ∴∠A=, ∴该三角形三个内角度数为:,,.
复制答案
考点分析:
相关试题推荐
某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.
七年级学生最喜欢的运动项目人数统计表:
项目排球篮球跳绳踢毽其它
人数(人)78 146
八年级学生最喜欢的运动项目人数统计图:
manfen5.com 满分网
请根据统计表(图)解答下列问题:
(1)本次调查抽取了多少名学生?
(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比;
(3)该校共有学生1800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽,那么学校在“大间操”时至少应提供多少个毽?
查看答案
manfen5.com 满分网如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.
查看答案
已知函数y=mx2-6x+1(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求m的值.
查看答案
先化简,后求值:(2x+3y)2-(2x+y)(2x-y),其中manfen5.com 满分网
查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数).
其中正确的结论有    (填序号)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.